

Studio di Microzonazione Sismica relativa al territorio comunale di Rosignano marittimo (LI) I livello di analisi

REPORTS DELLE MISURE HVSR

Geoecho snc - Dott. Geol. Andrea Marini

Collaboratori: Dott. Geol. Fausto Capacci Dott. Geol. Jenny Migliorini

PROGETTO

FEBBRAIO 2017

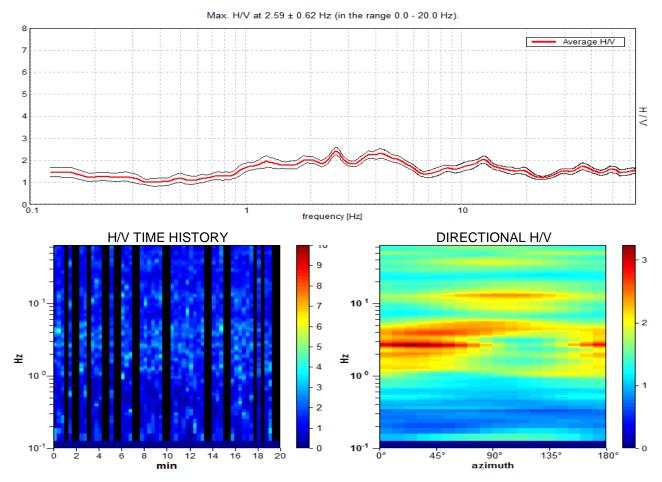
Instrument: TZ3-0001/01-13

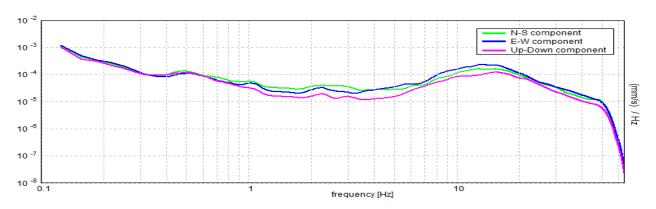
Data format: 32 byte Full scale [mV]: 51

Start recording: 14/12/15 15:10:28 End recording: 14/12/15 15:30:28

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 67% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 2.59 ± 0.62 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	2.59 > 0.50	OK			
$n_c(f_0) > 200$	2075.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$ Exceeded 0 out of 126 times OK				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$		ОК			
[At least	5 out of 6 should be fulfilled]	ОК	NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	ОК	NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.656 Hz	-	NO NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.656 Hz 2.42 > 2	-			

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

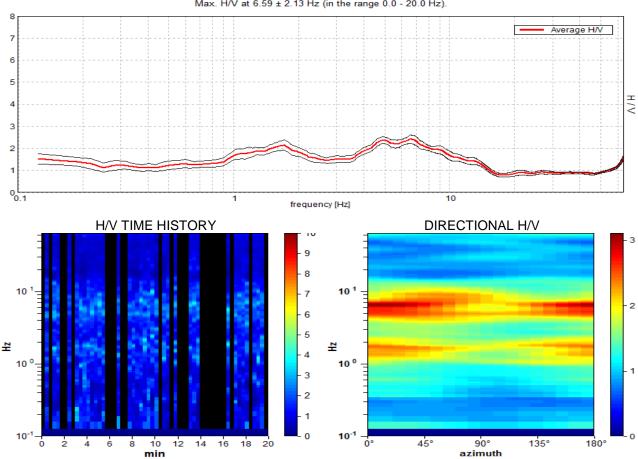
Data format: 32 byte Full scale [mV]: 51

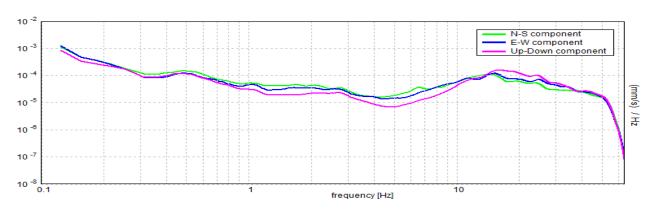
Start recording: 14/12/15 15:51:12 End recording: 14/12/15 16:11:12

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 58% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 6.59 ± 2.13 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 6.59 ± 2.13 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	6.59 > 0.50	OK		
$n_c(f_0) > 200$	4615.6 > 200	OK		
$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ Exceeded 0 out of 318 times OK $\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$				
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO	
Criteri [At least	•	ОК	NO	
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 14.344 Hz		NO NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 14.344 Hz 2.41 > 2			

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

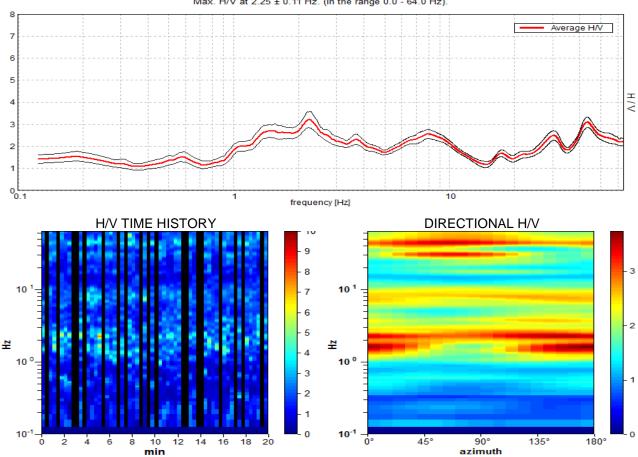
Data format: 32 byte Full scale [mV]: 51

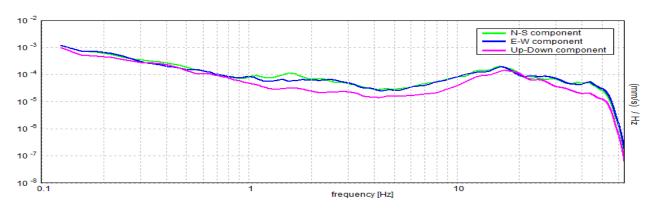
Start recording: 05/02/16 16:17:21 End recording: 05/02/16 16:37:21

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 68% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 2.25 ± 0.11 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 2.25 ± 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	2.25 > 0.50	OK				
$n_c(f_0) > 200$	1845.0 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$ Exceeded 0 out of 109 times					
	a for a clear H/V peak 5 out of 6 should be fulfilled]					
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$		ОК				
[At least	5 out of 6 should be fulfilled]	ОК	NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.938 Hz		NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.938 Hz 3.21 > 2	OK	NO			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

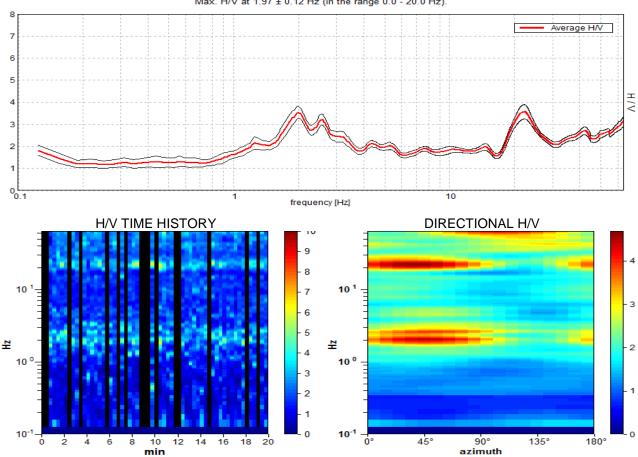
Data format: 32 byte Full scale [mV]: 51

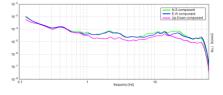
Start recording: 16/12/15 15:41:07 End recording: 16/12/15 16:01:07

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.97 ± 0.12 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 1.97 ± 0.12 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	1.97 > 0.50	OK		
$n_c(f_0) > 200$	1732.5 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 96 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.063 Hz	ОК		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	1.063 Hz 5.75 Hz	OK OK		
	1 1 1			
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	5.75 Hz	OK	NO	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	5.75 Hz 3.53 > 2	OK	NO	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

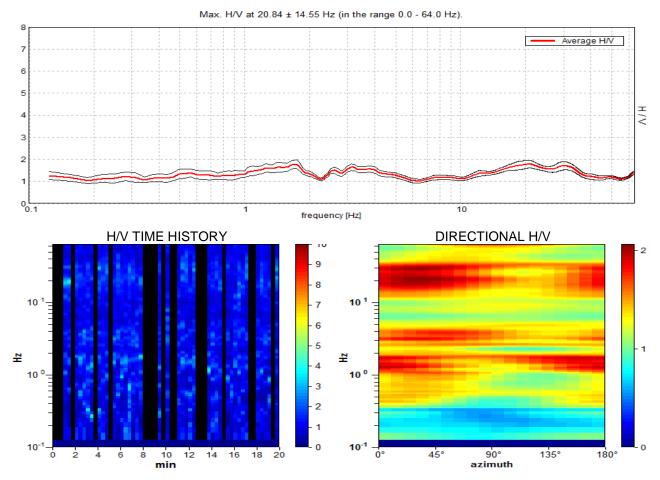
Instrument: TZ3-0001/01-13

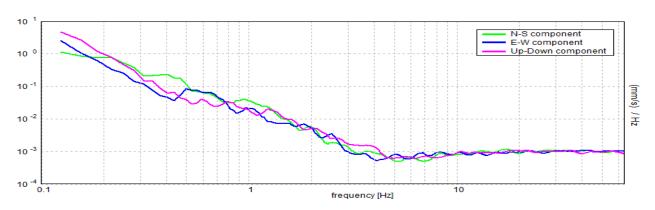
Data format: 32 byte Full scale [mV]: 51

Start recording: 16/12/15 16:13:38 End recording: 16/12/15 16:33:38

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 67% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 20.84 ± 14.55 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	20.84 > 0.50	OK			
$n_c(f_0) > 200$	16675.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1002	ОК			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2					
boung 1947 At /2					
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ $\sigma_{\text{f}} < \varepsilon(f_0)$	14.55394 < 1.04219				

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13

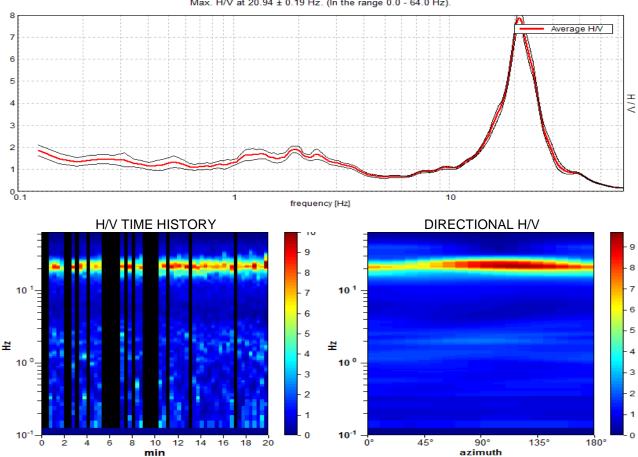
Data format: 32 byte Full scale [mV]: 51

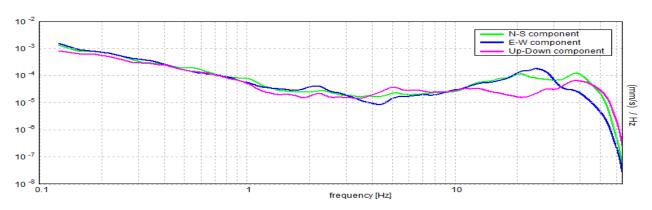
Start recording: 05/02/16 14:16:12 End recording: 05/02/16 14:36:12

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 67% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 20.94 \pm 0.19 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 20.94 ± 0.19 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$ $20.94 > 0.50$ OK				
$n_c(f_0) > 200$	16750.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1006	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
	for a clear H/V peak out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	17.438 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	25.906 Hz	OK		
A ₀ > 2	7.87 > 2	OK		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.00921 < 0.05	OK		
$\sigma_{\rm f} < \epsilon({\rm f_0})$	0.19289 < 1.04688	OK		
$\sigma_{A}(f_0) < \theta(f_0)$	0.3595 < 1.58	OK		

1	window length
L _W	
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
.,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

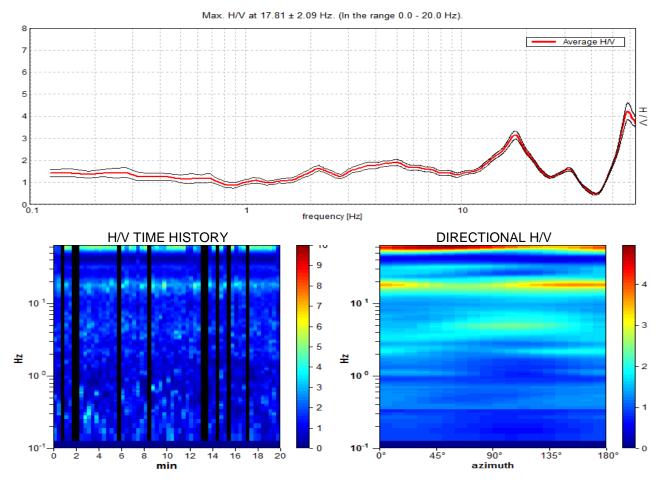
Instrument: TZ3-0001/01-13

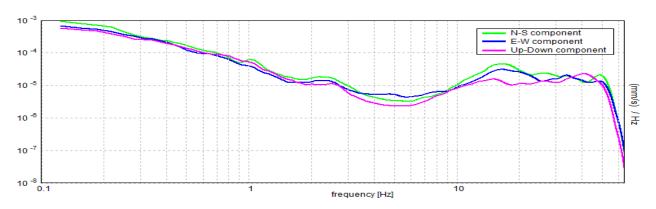
Data format: 32 byte Full scale [mV]: 51

Start recording: 05/02/16 15:05:06 End recording: 05/02/16 15:25:07

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 83% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 17.81 ± 2.09 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	17.81 > 0.50	OK		
$n_c(f_0) > 200$	17812.5 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 856 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Cuitoui	a far a alaar UA/ naak			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
		ОК		
[At least	5 out of 6 should be fulfilled]	OK OK		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 11.969 Hz			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 11.969 Hz 23.031 Hz	OK	NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 11.969 Hz 23.031 Hz 3.15 > 2	OK	NO NO	

curve should
00

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

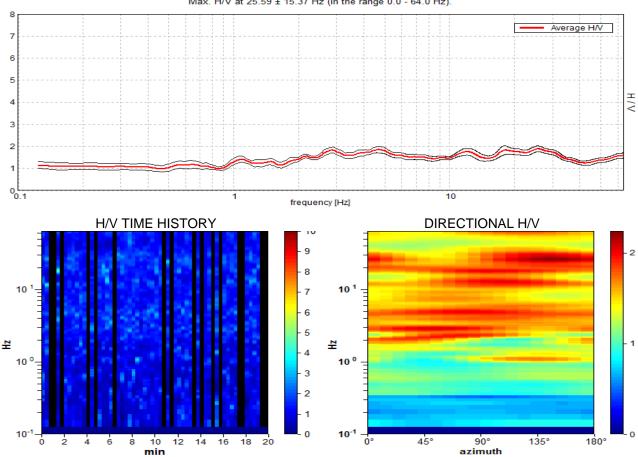
Data format: 32 byte Full scale [mV]: 51

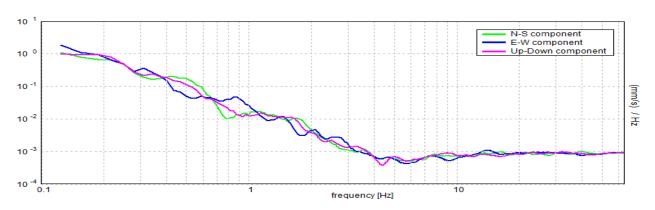
Start recording: 16/12/15 16:49:45 End recording: 16/12/15 17:09:45

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 25.59 ± 15.37 Hz (in the range 0.0 - 64.0 Hz).

Max. H/V at 25.59 ± 15.37 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	25.59 > 0.50	OK			
$n_c(f_0) > 200$	22522.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 1230 times	OK			
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f ⁻ in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$ Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$			NO NO		
	1.89 > 2		_		
Exists f + in $[f_0, 4f_0] A_{H/V}(f +) < A_0 / 2$	1.89 > 2 0.60039 < 0.05		NO		
Exists f + in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$			NO NO		

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f = ``	frequency between f₀/4 and f₀ for which A _{H/V} (f -) < A₀/2
f +	frequency between f₀ and 4f₀ for which A _{H/V} (f +) < A₀/2
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σlogH/√(f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

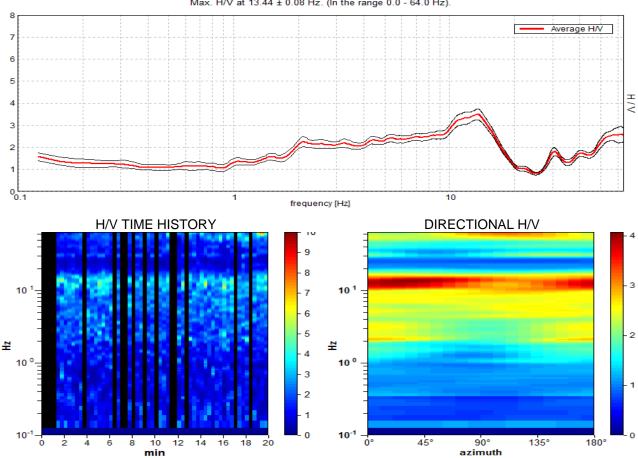
Data format: 32 byte Full scale [mV]: 51

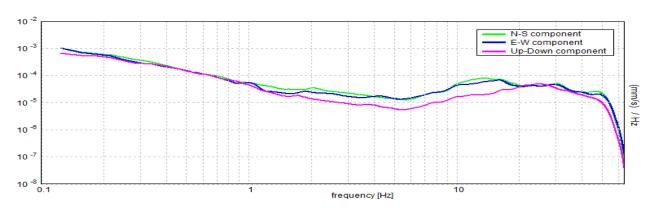
Start recording: 05/02/16 15:40:07 End recording: 05/02/16 16:00:07

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 13.44 ± 0.08 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 13.44 ± 0.08 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	13.44 > 0.50	OK			
n _c (f ₀) > 200	11825.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 646 times	OK			
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Criteri			NO		
Criteri [At least		ОК	NO		
Criteri [At least Exists f^- in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO		
Exists f ⁻ in [f ₀ /4, f ₀] $A_{H/V}(f^{-}) < A_{0} / 2$ Exists f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^{+}) < A_{0} / 2$	5 out of 6 should be fulfilled] 17.938 Hz		NO		
Exists f in [f ₀ /4, f ₀] $A_{H/V}(f^{-}) < A_{0} / 2$ Exists f in [f ₀ , 4f ₀] $A_{H/V}(f^{+}) < A_{0} / 2$ $A_{0} > 2$	5 out of 6 should be fulfilled] 17.938 Hz 3.50 > 2	OK	NO		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency fo
A _{H/∨} (f)	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f +	frequency between f₀ and 4f₀ for which A _{H/V} (f +) < A₀/2
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
()	be multiplied or divided
_{OlogH/∨} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

GABBRO, T 10

Instrument: TZ3-0001/01-13

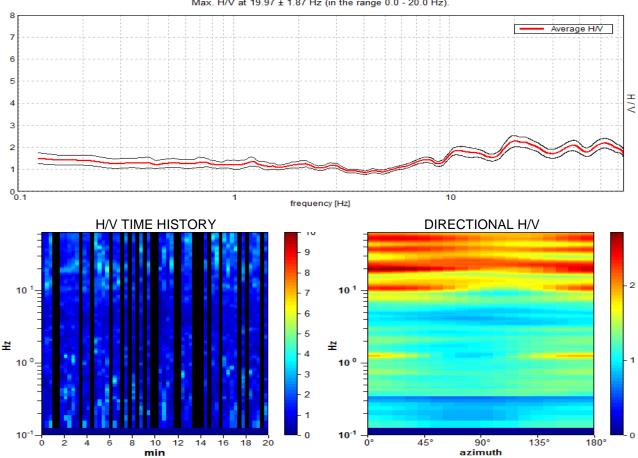
Data format: 32 byte Full scale [mV]: 51

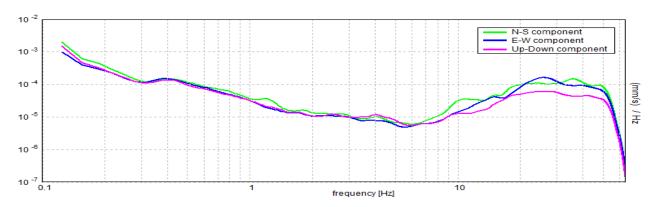
Start recording: 16/12/15 14:19:16 End recording: 16/12/15 14:39:16

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 65% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 19.97 ± 1.87 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 19.97 ± 1.87 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	19.97 > 0.50	OK			
$n_c(f_0) > 200$	15575.6 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 960 times	OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$					
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	6.219 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2	2.28 > 2	OK			
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.0935 < 0.05		NO		
poung 1777 / AC/2 0					
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	1.86703 < 0.99844		NO		

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

GABBRO, T11

Instrument: TZ3-0001/01-13

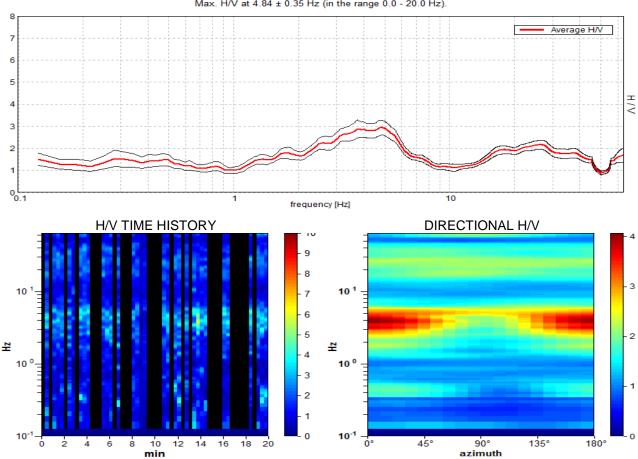
Data format: 32 byte Full scale [mV]: 51

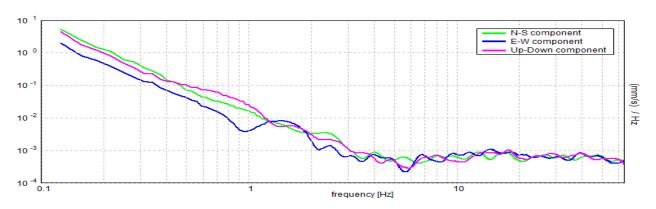
Start recording: 16/12/15 13:34:19 End recording: 16/12/15 13:54:19

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.84 ± 0.35 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 4.84 ± 0.35 Hz (in the range 0.0 - 20.0 Hz).

	for a reliable H/V curve All 3 should be fulfilled]		
$f_0 > 10 / L_w$	4.84 > 0.50	OK	
$n_c(f_0) > 200$	3100.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 234 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criter	ia for a clear H/V peak		
	ia for a clear H/V peak 5 out of 6 should be fulfilled]		
	•	ОК	
[At least	5 out of 6 should be fulfilled]	OK OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 1.469 Hz 7.688 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	1.469 Hz 7.688 Hz 2.94 > 2	OK	NO NO

1	window length
L _W	
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
.,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

GABBRO, T 12

Instrument: TZ3-0001/01-13

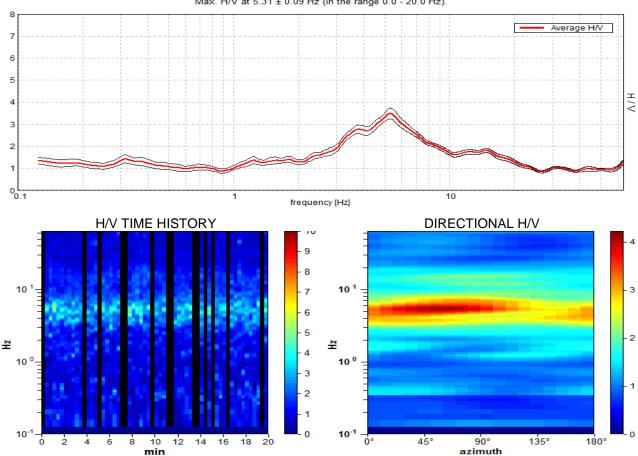
Data format: 32 byte Full scale [mV]: 51

Start recording: 16/12/15 12:53:38 End recording: 16/12/15 13:13:38

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 77% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 5.31 ± 0.09 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 5.31 ± 0.09 Hz (in the range 0.0 - 20.0 Hz).

	for a reliable H/V curve	
$f_0 > 10 / L_w$	5.31 > 0.50	OK
$n_c(f_0) > 200$	4887.5 > 200	OK
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 256 times	OK
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$		
Criteri	a for a clear H/V peak	
	ia for a clear H/V peak 5 out of 6 should be fulfilled]	
[At least	•	ОК
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	OK OK
[At least	5 out of 6 should be fulfilled] 2.75 Hz	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 2.75 Hz 9.813 Hz	OK
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 2.75 Hz 9.813 Hz 3.49 > 2	OK OK

curve should
00

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T 13

Instrument: TZ3-0001/01-13

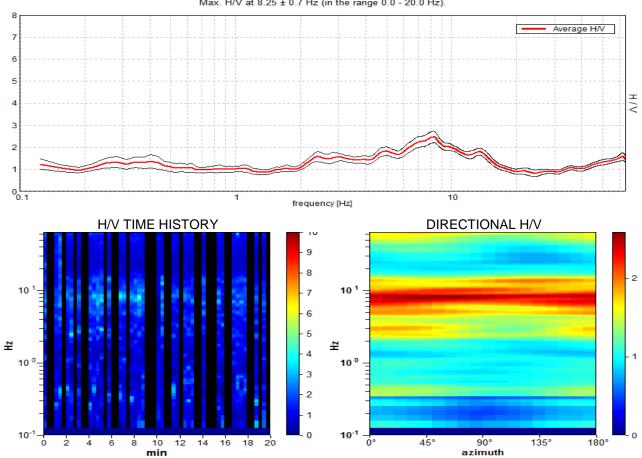
Data format: 32 byte Full scale [mV]: 51

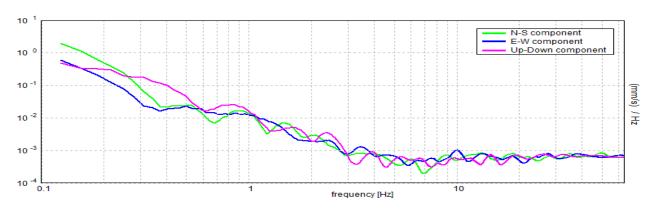
Start recording: 16/12/15 12:18:55 End recording: 16/12/15 12:38:55

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 55% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 8.25 ± 0.7 Hz (in the range 0.0 - 20.0 Hz).

Max. H/V at 8.25 ± 0.7 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	8.25 > 0.50	OK			
$n_{c}(f_{0}) > 200$	5445.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 397 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	2.094 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	15.938 Hz	OK			
$A_0 > 2$					
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ $ 0.08449 < 0.05$				
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.69703 < 0.4125		NO		
$\sigma_{A}(f_0) < \theta(f_0)$	0.2608 < 1.58	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 14

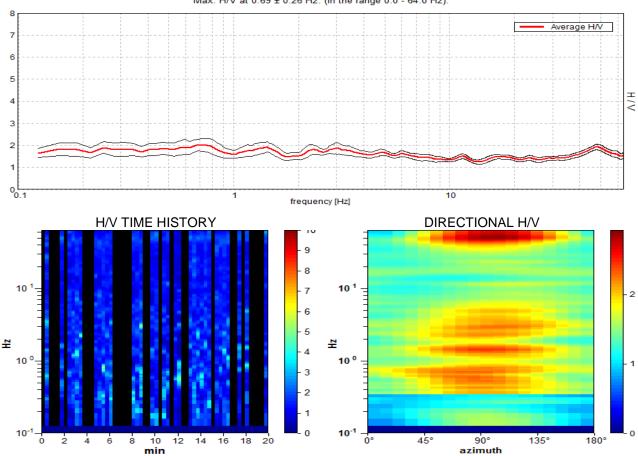
Instrument: TZ3-0001/01-13

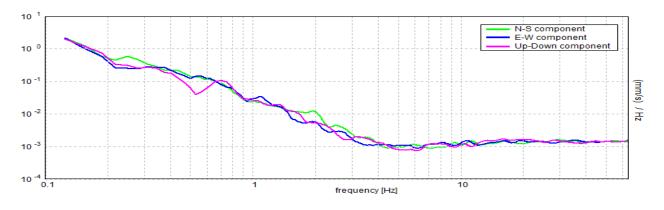
Data format: 32 byte Full scale [mV]: 51

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 55% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.69 ± 0.26 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 0.69 ± 0.26 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	0.69 > 0.50	OK				
$n_c(f_0) > 200$	453.8 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$ Exceeded 0 out of 34 times					
	a for a clear H/V peak 5 out of 6 should be fulfilled]					
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO NO			
[At least	•	ОК				
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled]	ОК				
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 2.02 > 2	ОК	NO			

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 15

Instrument: TZ3-0001/01-13

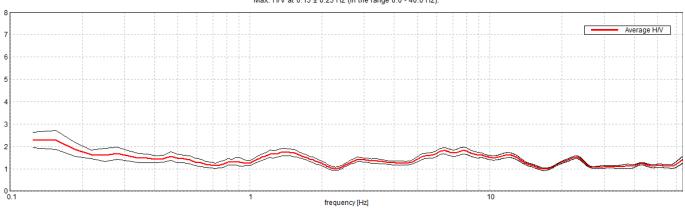
Data format: 32 byte Full scale [mV]: 51

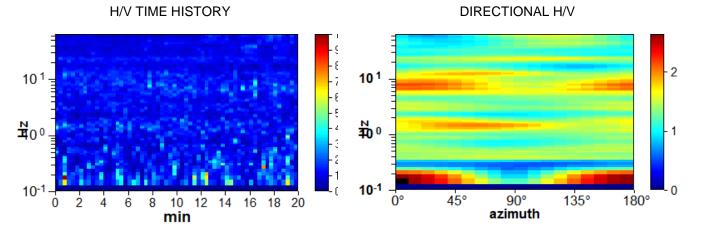
Start recording: 02/11/16 12:24:38 End recording: 02/11/16 12:44:39

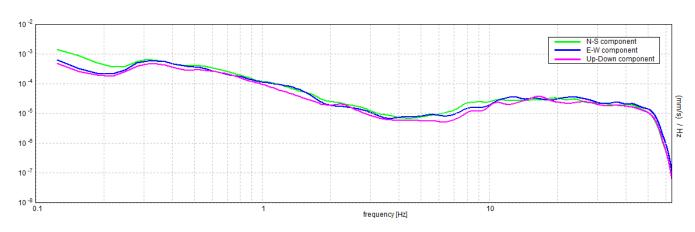
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analysis performed on the entire trace.


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.13 ± 0.23 Hz (in the range 0.0 - 40.0 Hz).

Max. H/V at 0.13 ± 0.23 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.13 > 0.50		NO	
$n_c(f_0) > 200$	150.0 > 200		NO	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5\text{Hz}$	Exceeded 0 out of 7 times	OK		
			1	
Criteria	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Criteria		OK		
Criteria [At least to Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	ОК	NO	
Criteria [At least :	5 out of 6 should be fulfilled]	OK OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.094 Hz		NO NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	0.094 Hz 2.29 > 2			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 16

Instrument: TZ3-0001/01-13

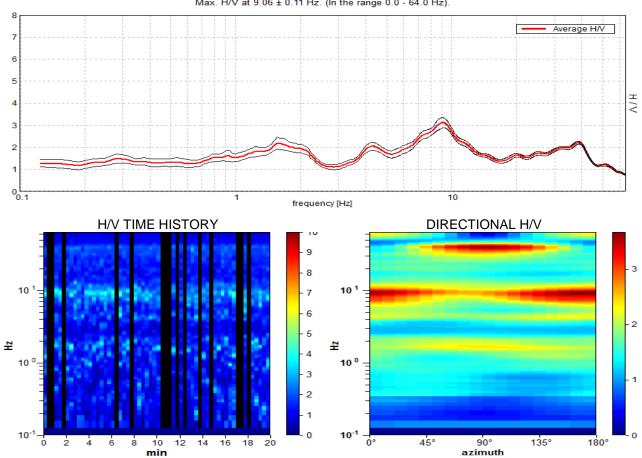
Data format: 32 byte Full scale [mV]: 51

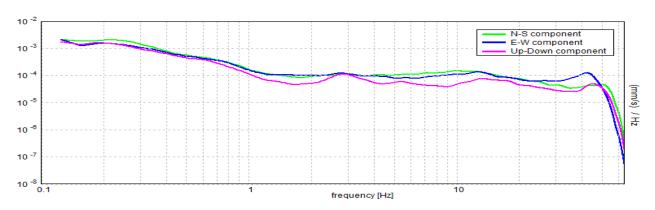
Start recording: 13/01/16 12:20:02 End recording: 13/01/16 12:40:02

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 75% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 9.06 ± 0.11 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 9.06 ± 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria	for a reliable H/V curve			
A]	ll 3 should be fulfilled]			
f ₀ > 10 / L _w	9.06 > 0.50	ОК		
$n_c(f_0) > 200$	8156.3 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 436 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.719 Hz	OK		
Exists f in $[f_0, 4f_0] A_{H/V}(f) < A_0 / 2$	15.0 Hz	OK		
A ₀ > 2	3.12 > 2	OK		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.01229 < 0.05				
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.11141 < 0.45313	OK		
$\sigma_{\Lambda}(f_0) < \theta(f_0)$	0.2358 < 1.58	OK		

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 17

Instrument: TZ3-0001/01-13

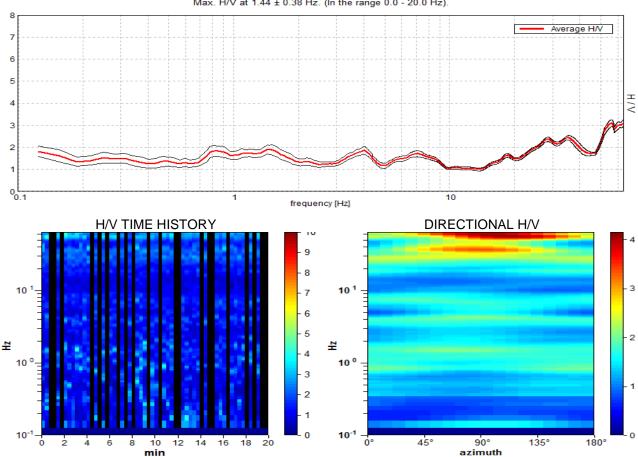
Data format: 32 byte Full scale [mV]: 51

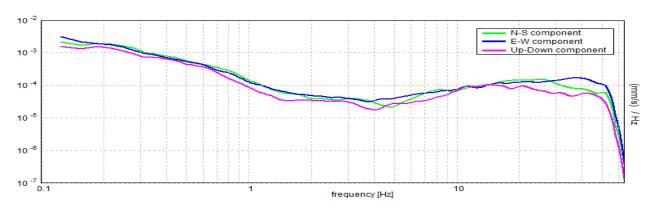
Start recording: 13/01/16 13:07:43 End recording: 13/01/16 13:27:43

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 65% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.44 ± 0.38 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 1.44 ± 0.38 Hz (in the range 0.0 - 20.0 Hz).

A]	Il 3 should be fulfilled]		
f ₀ > 10 / L _w	1.44 > 0.50	OK	
$n_c(f_0) > 200$	1121.3 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 70 times	OK	
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	•		NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	•		NO NO
[At least	•		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled]		NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 1.91 > 2		NO NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$								
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0			
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58			
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20			

CASTIGLIONCELLO, T 18

Instrument: TZ3-0001/01-13

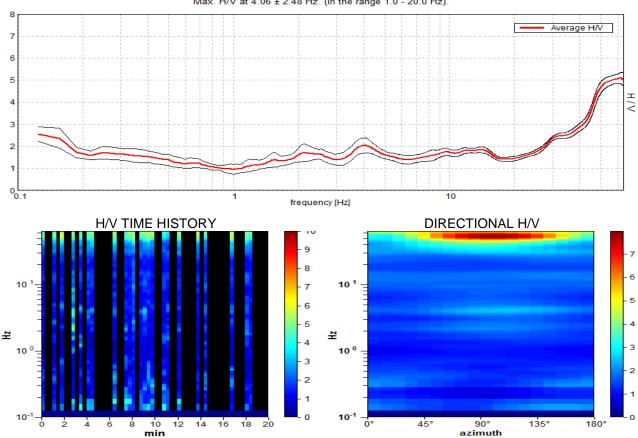
Data format: 32 byte Full scale [mV]: 51

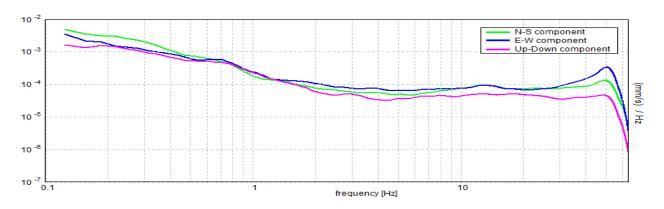
Start recording: 13/01/16 14:14:13 End recording: 13/01/16 14:34:13

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 38% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.06 ± 2.48 Hz. (In the range 1.0 - 20.0 Hz).

Max. H/V at 4.06 ± 2.48 Hz (in the range 1.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	4.06 > 0.50	OK			
$n_{c}(f_{0}) > 200$	1868.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 196 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.094 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2	2.04 > 2	OK			
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.61139 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	2.48376 < 0.20313		NO		
$\sigma_{A}(f_0) < \theta(f_0)$	0.3421 < 1.58	OK			

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 19

Instrument: TZ3-0001/01-13

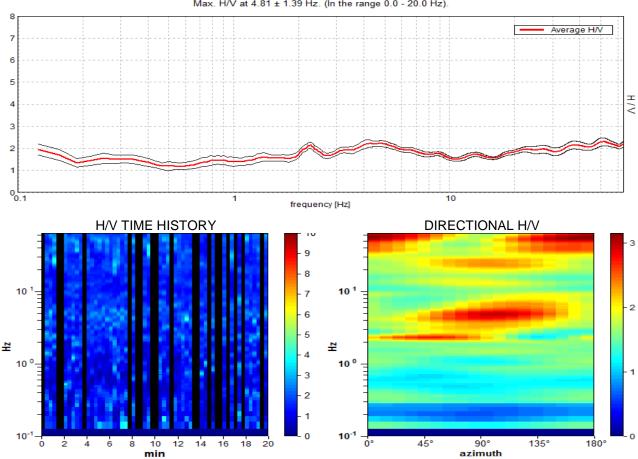
Data format: 32 byte Full scale [mV]: 51

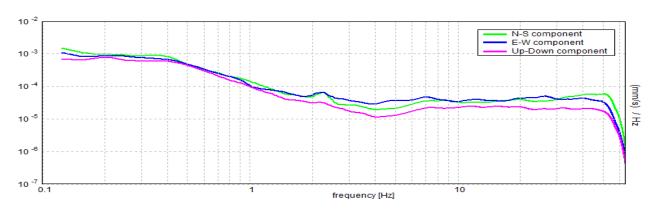
Start recording: 13/01/16 19:37:19 End recording: 13/01/16 19:57:19

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 68% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.81 ± 1.39 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 4.81 ± 1.39 Hz (in the range 0.0 - 20.0 Hz).

	for a reliable H/V curve All 3 should be fulfilled]		
$f_0 > 10 / L_w$	4.81 > 0.50	OK	
$n_c(f_0) > 200$	3946.3 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	OK		
Criter	ia for a clear H/V peak		
	ia for a clear H/V peak 5 out of 6 should be fulfilled]		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	•		NO
[At least	•	222	NO NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	•	ОК	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	ОК	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 2.23 > 2	OK	NO

curve should
00

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 20

Instrument: TZ3-0001/01-13

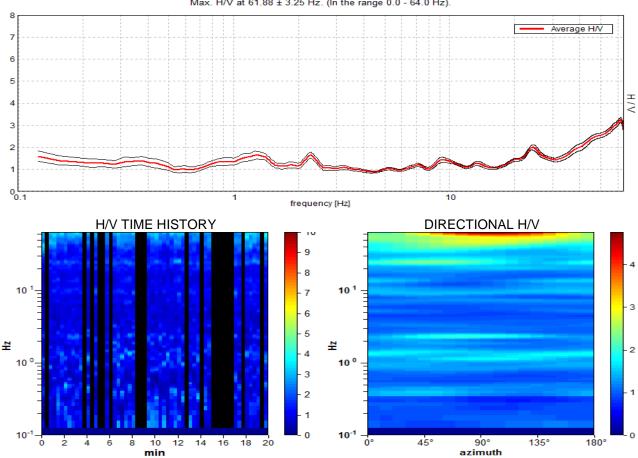
Data format: 32 byte Full scale [mV]: 51

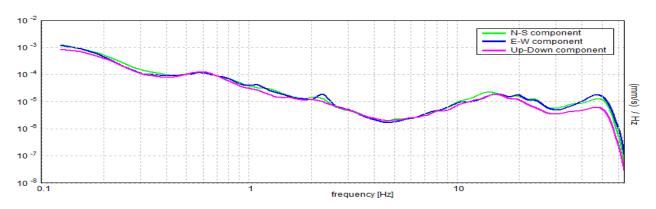
Start recording: 02/02/16 17:11:11 End recording: 02/02/16 17:31:11

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 68% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 61.88 ± 3.25 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 61.88 ± 3.25 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	61.88 > 0.50	OK			
$n_c(f_0) > 200$	50737.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1059	OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	34.844 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
$A_0 > 2$	3.24 > 2	OK			
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.0526 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	3.25477 < 3.09375		NO		
$\sigma_{A}(f_0) < \theta(f_0)$	0.105 < 1.58	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 21

Instrument: TZ3-0001/01-13

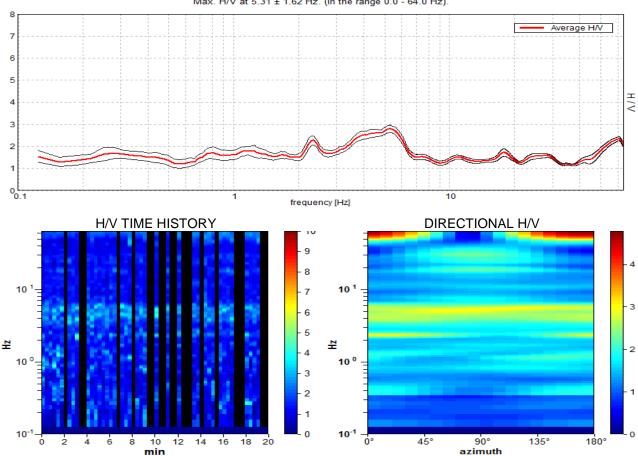
Data format: 32 byte Full scale [mV]: 51

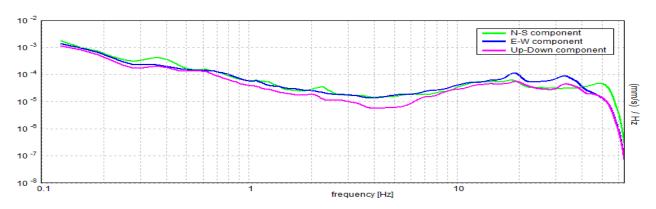
Start recording: 02/02/16 17:48:23 End recording: 02/02/16 18:08:24

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 65% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 5.31 ± 1.62 Hz. (In the range 0.0 - 64.0 Hz).

Max. H/V at 5.31 ± 1.62 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$ 5.31 > 0.50 OK				
$n_c(f_0) > 200$	4143.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 256 times	OK		
ο _Α (.), το τοι οιοιή τι τ <u>ο</u> ιή τι η τοιοι				
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO	
Criteri [At least	•	ОК	NO	
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 8.156 Hz		NO NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 8.156 Hz 2.80 > 2			

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 22

Instrument: TZ3-0001/01-13

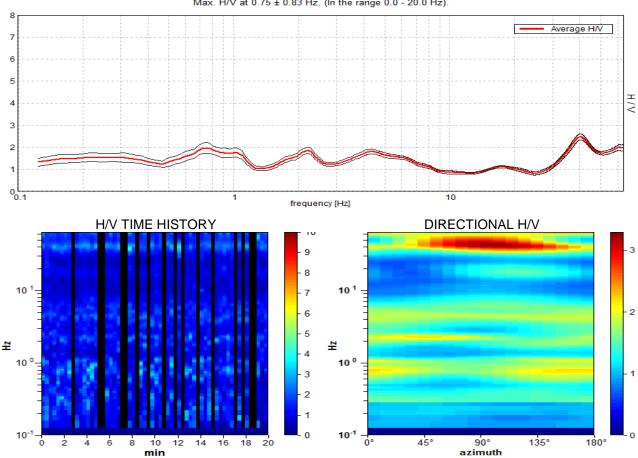
Data format: 32 byte Full scale [mV]: 51

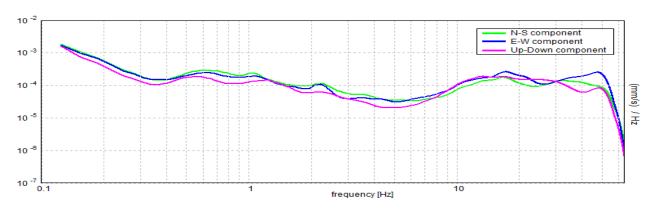
Start recording: 02/02/16 19:20:19 End recording: 02/02/16 19:40:19

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.75 ± 0.83 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 0.75 ± 0.83 Hz (in the range 0.0 - 20.0 Hz).

A]	Il 3 should be fulfilled]		
f ₀ > 10 / L _w	0.75 > 0.50	OK	
$n_c(f_0) > 200$	660.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 37 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
	a for a clear H/V peak		
[At least	a for a clear H/V peak 5 out of 6 should be fulfilled]		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	•		NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	•		NO NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	•		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]		NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 1.97 > 2		NO NO

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 23

Instrument: TZ3-0001/01-13

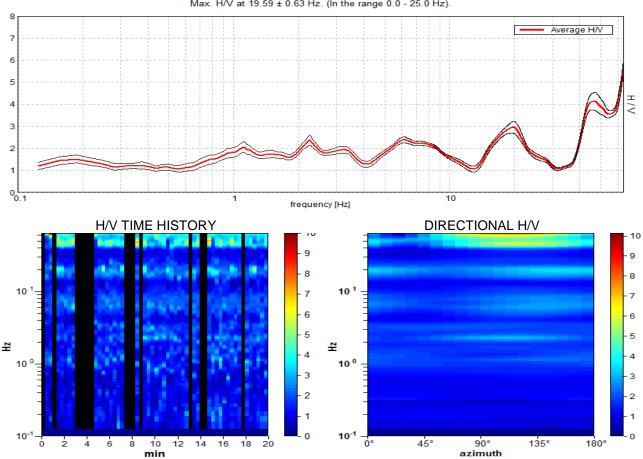
Data format: 32 byte Full scale [mV]: 51

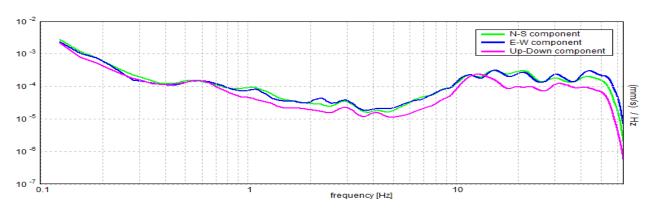
Start recording: 02/02/16 18:35:36 End recording: 02/02/16 18:55:37

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 75% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 11%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 19.59 ± 0.63 Hz. (In the range 0.0 - 25.0 Hz).

Max. H/V at 19.59 ± 0.63 Hz (in the range 0.0 - 25.0 Hz).

Criteria	for a reliable H/V curve		
[A	Il 3 should be fulfilled]		
-	-		
$f_0 > 10 / L_w$	19.59 > 0.50	OK	
$n_c(f_0) > 200$	17634.4 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 942 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	14.219 Hz	OK	
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	27.625 Hz	OK	
A ₀ > 2	2.96 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.03215 < 0.05	OK	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	0.62995 < 0.97969	OK	
$\sigma_{\Lambda}(f_0) < \theta(f_0)$	0.2674 < 1.58	OK	

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 24

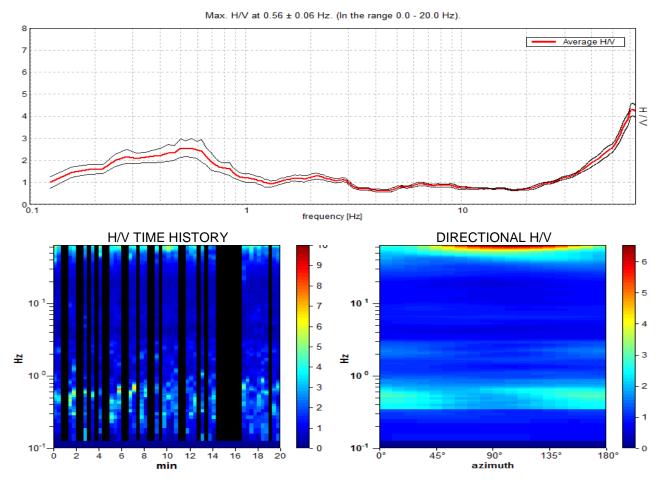
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

Start recording: 13/01/16 18:45:03 End recording: 13/01/16 19:05:03

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 57% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.56 ± 0.06 Hz (in the range 0.0 - 20.0 Hz).

A]	ll 3 should be fulfilled]		
f ₀ > 10 / L _w	0.56 > 0.50	OK	
$n_c(f_0) > 200$	382.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 28 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
[At least	•	ОК	
	5 out of 6 should be fulfilled]	OK OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.125 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.125 Hz 0.938 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.125 Hz 0.938 Hz 2.56 > 2	OK	NO

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

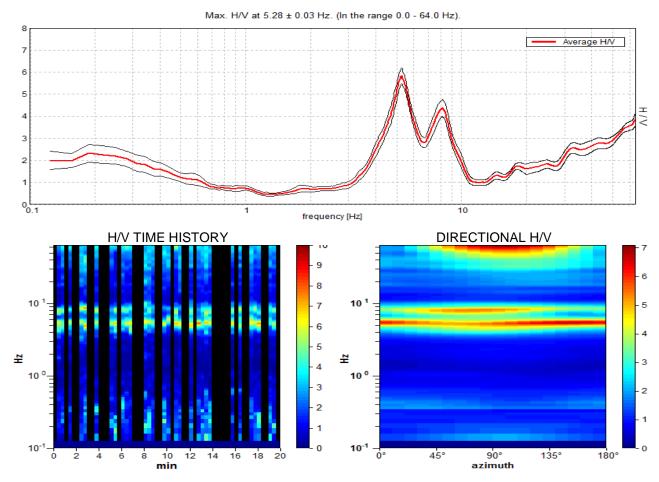
VADA, T 25

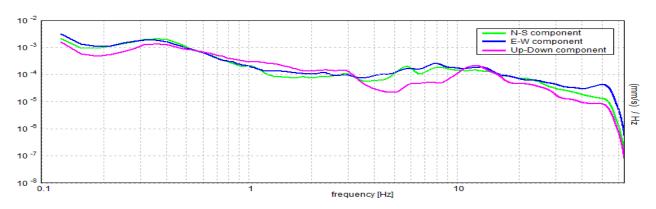
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 50% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 5.28 ± 0.03 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.28 > 0.50	OK		
$n_c(f_0) > 200$	3168.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 254 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
0111	- f			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
[At least		ОК		
	5 out of 6 should be fulfilled]	OK OK		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 4.219 Hz			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 4.219 Hz 6.5 Hz	OK		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 4.219 Hz 6.5 Hz 5.83 > 2	OK OK		

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 26

Instrument: TZ3-0001/01-13

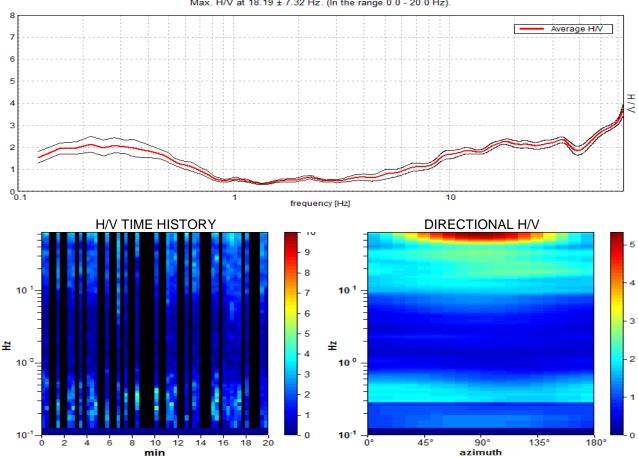
Data format: 32 byte Full scale [mV]: 51

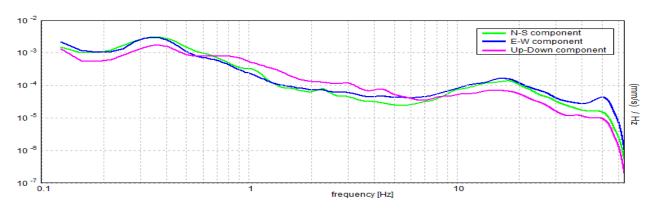
Start recording: 16/03/16 18:01:19 End recording: 16/03/16 18:21:19

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 50% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 18.19 ± 7.32 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 18.19 ± 7.32 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	18.19 > 0.50	OK				
$n_c(f_0) > 200$	10912.5 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$ Exceeded 0 out of 874 times					
Critori	a for a clear H/V neak					
	a for a clear H/V peak 5 out of 6 should be fulfilled]					
[At least	-	ОК				
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	ОК	NO			
[At least	5 out of 6 should be fulfilled]	ОК	NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 7.719 Hz	-	NO NO			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 7.719 Hz 2.26 > 2	-				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA, T 27

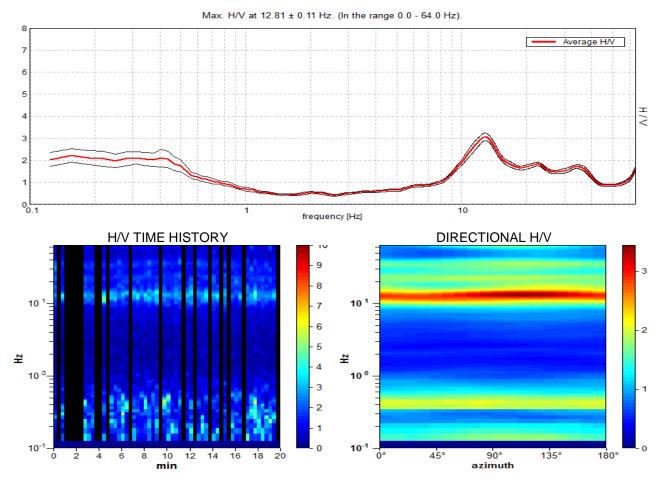
Instrument: TZ3-0001/01-13

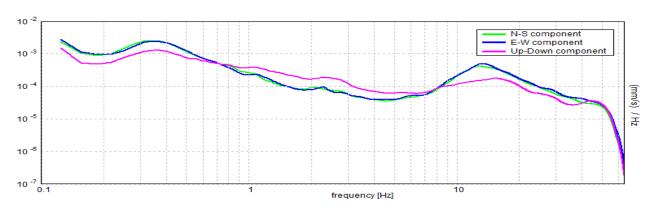
Data format: 32 byte Full scale [mV]: 51

Start recording: 16/03/16 12:20:09 End recording: 16/03/16 12:40:09

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 70% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 12.81 \pm 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	12.81 > 0.50	OK			
$n_c(f_0) > 200$	10762.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 616 times				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	9.219 Hz	OK			
Exists f $^+$ in [f ₀ , 4f ₀] A _{H/V} (f $^+$) < A ₀ / 2	25.281 Hz	OK			
A ₀ > 2	3.07 > 2	OK			
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.00895 < 0.05	OK			
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.11472 < 0.64063	OK			
$\sigma_{A}(f_0) < \theta(f_0)$	0.1732 < 1.58	OK			

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA, T 28

Instrument: TZ3-0001/01-13

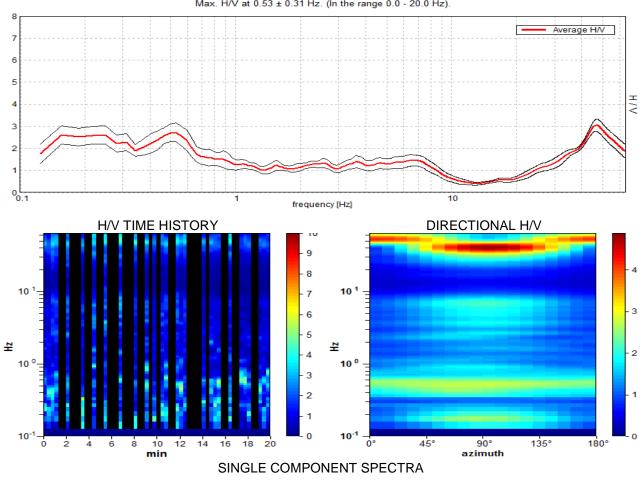
Data format: 32 byte Full scale [mV]: 51

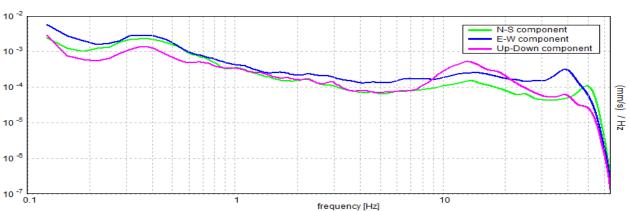
Start recording: 16/03/16 13:29:10 End recording: 16/03/16 13:49:10

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 47% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.53 ± 0.31 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 0.53 ± 0.31 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.53 > 0.50	ОК		
$n_c(f_0) > 200$ 297.5 > 200 OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 26 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
	5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3 out of a should be fulfilled]		NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	0.969 Hz	OK	NO	
		OK OK	NO	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	0.969 Hz		NO NO	
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	0.969 Hz 2.73 > 2			

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M_MO, T 29

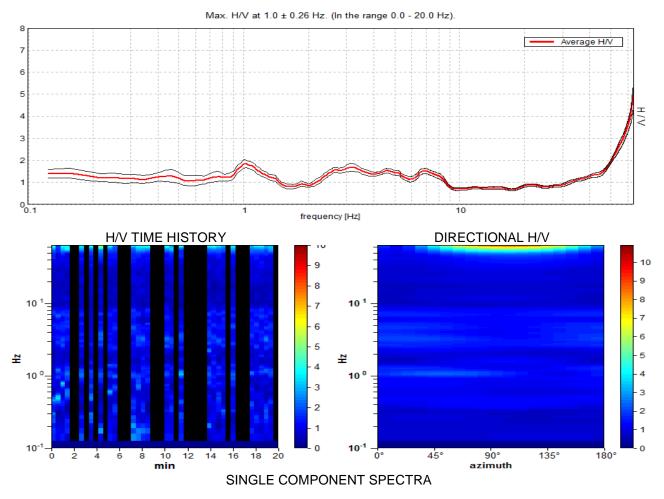
Instrument: TZ3-0001/01-13

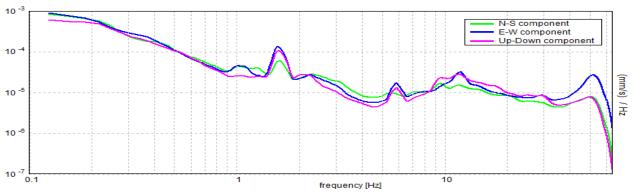
Data format: 32 byte Full scale [mV]: 51

Start recording: 05/02/16 17:47:36 End recording: 05/02/16 18:07:36

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 54% trace (manual window selection)


Sampling rate: 128 Hz Window size: 25 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.0 ± 0.26 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	1.00 > 0.40	OK			
$n_c(f_0) > 200$	650.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 49 times OK				
Critori					
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO		
[At least	•	ОК	NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	ОК	NO NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 1.5 Hz	ОК			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 1.5 Hz 1.84 > 2	OK	NO		

L_{w}	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M_MO, T 30

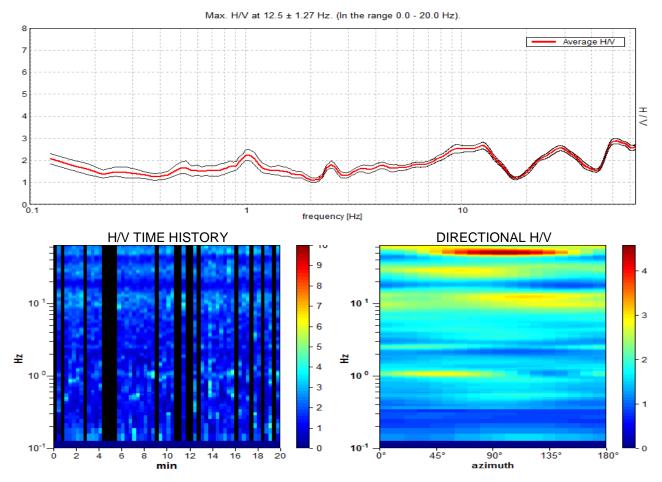
Instrument: TZ3-0001/01-13

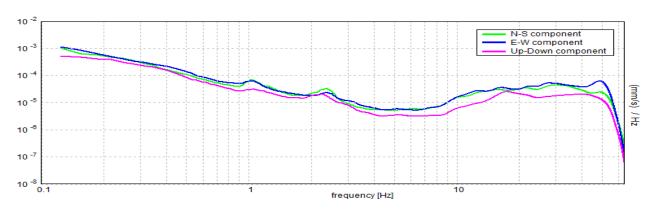
Data format: 32 byte Full scale [mV]: 51

Start recording: 05/02/16 18:25:06 End recording: 05/02/16 18:45:06

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 72% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 12.5 ± 1.27 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	12.50 > 0.50	OK		
$n_c(f_0) > 200$	10750.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 601 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
	•		NO	
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	•	ОК	NO	
[At least	5 out of 6 should be fulfilled]	OK OK	NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 16.688 Hz		NO NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 16.688 Hz 2.67 > 2			

L_{w}	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M_MO, T 31

Instrument: TZ3-0001/01-13

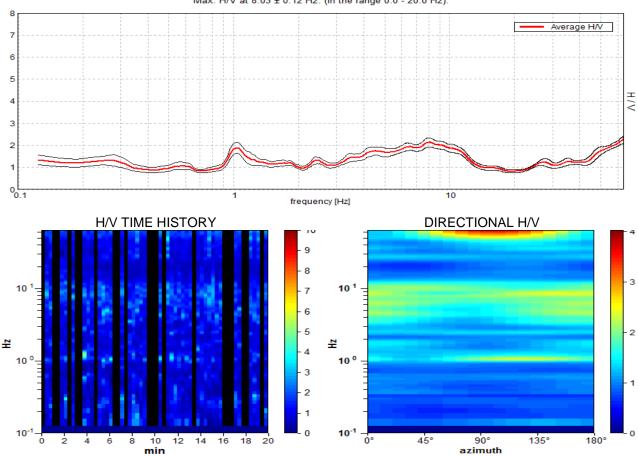
Data format: 32 byte Full scale [mV]: 51

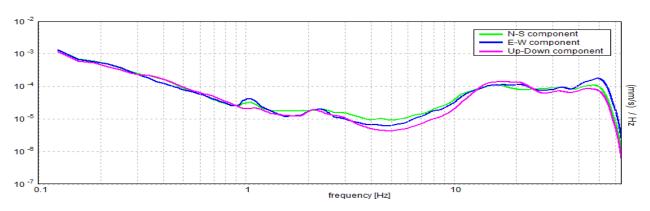
Start recording: 05/02/16 19:08:19 End recording: 05/02/16 19:28:19

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 65% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 8.03 ± 0.12 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 8.03 ± 0.12 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	8.03 > 0.50	OK		
$n_{c}(f_{0}) > 200$	6264.4 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 386 times	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	2.188 Hz	OK		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	2.188 Hz 13.594 Hz	OK OK		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$				
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	13.594 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	13.594 Hz 2.13 > 2	OK OK		

curve should
00

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M_MO, T 32

Instrument: TZ3-0001/01-13

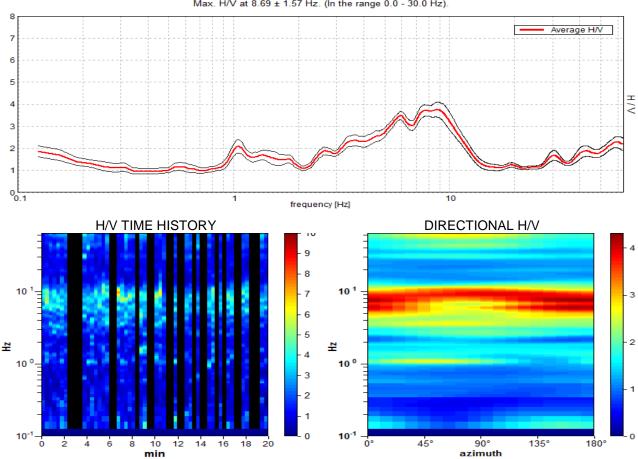
Data format: 32 byte Full scale [mV]: 51

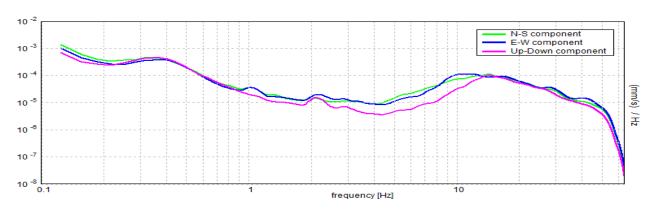
Start recording: 16/03/16 15:27:24 End recording: 16/03/16 15:47:24

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 62% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 8.69 ± 1.57 Hz. (In the range 0.0 - 30.0 Hz).

Max. H/V at 8.69 ± 1.57 Hz (in the range 0.0 - 30.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	8.69 > 0.50	OK		
$n_c(f_0) > 200$	6428.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 418 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	3.063 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	12.406 Hz	OK		
A ₀ > 2	3.76 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.1802 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	1.56545 < 0.43438		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.334 < 1.58	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO M_MO, T 33

Instrument: TZ3-0001/01-13

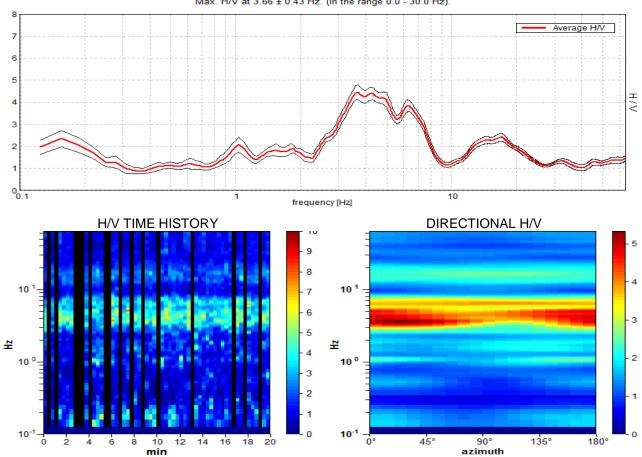
Data format: 32 byte Full scale [mV]: 51

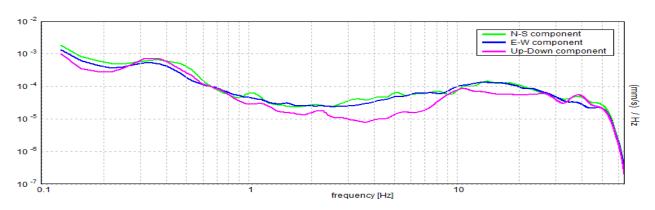
Start recording: 16/03/16 17:12:03 End recording: 16/03/16 17:32:04

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 3.66 ± 0.43 Hz. (In the range 0.0 - 30.0 Hz).

Max. H/V at 3.66 ± 0.43 Hz (in the range 0.0 - 30.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	3.66 > 0.50	OK		
$n_{c}(f_{0}) > 200$	3217.5 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 176 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Oultout	o for a close IIA/ mode			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
		ОК		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK		
[At least	5 out of 6 should be fulfilled] 2.531 Hz			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 2.531 Hz 7.906 Hz	OK	NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 2.531 Hz 7.906 Hz 4.45 > 2	OK	NO NO	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO SOLVAY, T34

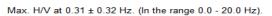
Instrument: TZ3-0001/01-13

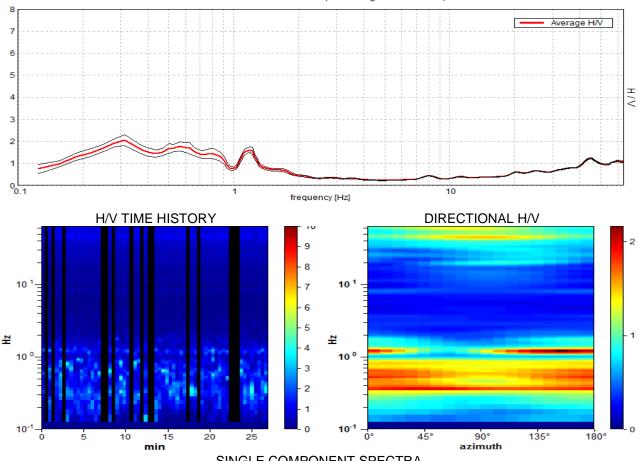
Data format: 32 byte Full scale [mV]: 51

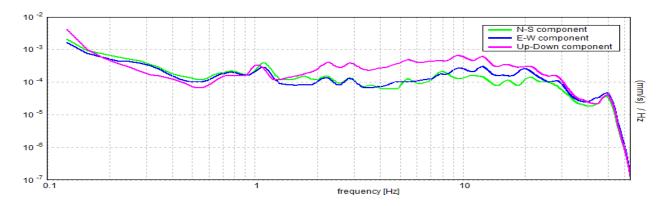
Start recording: 03/12/15 15:08:50 End recording: 03/12/15 15:35:55

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h27'00". Analyzed 77% trace (manual window selection)


Sampling rate: 128 Hz Window size: 25 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.31 ± 0.32 Hz (in the range 0.0 - 20.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	0.31 > 0.40		NO
$n_c(f_0) > 200$	382.8 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 16 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.156 Hz	ОК	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	0.156 Hz 0.938 Hz	OK OK	
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	0.938 Hz	OK	NO
Exists f in [f ₀ , 4f ₀] $A_{H/V}(f) < A_0 / 2$	0.938 Hz 2.06 > 2	OK	NO NO

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 35

Instrument: TZ3-0001/01-13

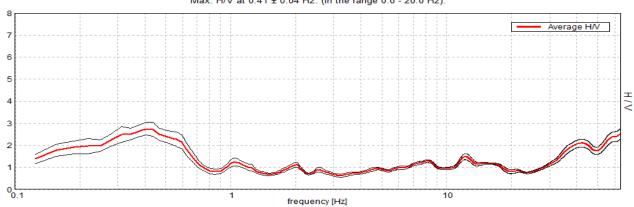
Data format: 32 byte Full scale [mV]: 51

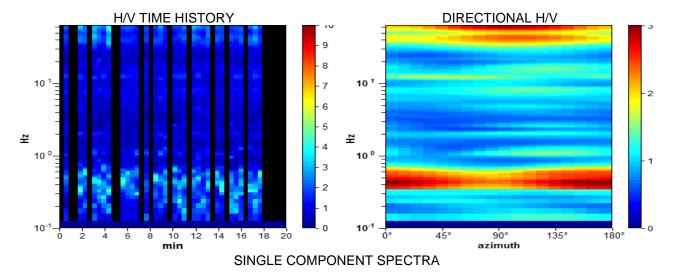
Start recording: 13/01/16 17:59:58 End recording: 13/01/16 18:19:58

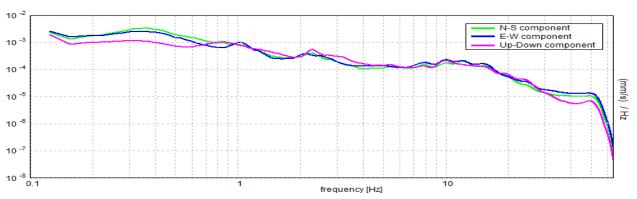
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 62% trace (manual window selection)


Sampling rate: 128 Hz Window size: 25 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.41 ± 0.04 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 0.41 ± 0.04 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
f ₀ > 10 / L _w	0.41 > 0.40	OK	<u> </u>
$n_{c}(f_{0}) > 200$	304.7 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 20 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled] 0.094 Hz	OK	
Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	0.688 Hz	OK	
$A_0 > 2$	2.75 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.10969 < 0.05		NO
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	0.04456 < 0.08125	OK	
$\sigma_{\alpha}(f_{\alpha}) < \theta(f_{\alpha})$	0.285 < 2.5	OK	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 36

Instrument: TZ3-0001/01-13

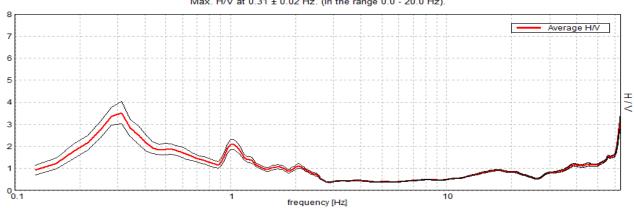
Data format: 32 byte Full scale [mV]: 51

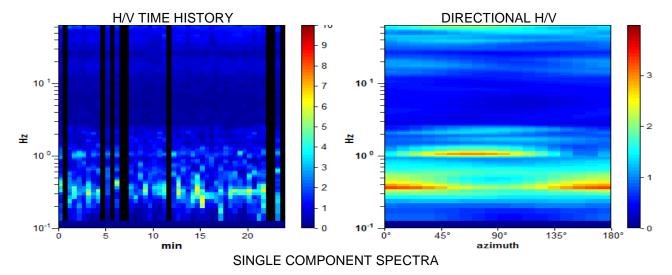
Start recording: 24/03/16 13:36:43 End recording: 24/03/16 14:00:43

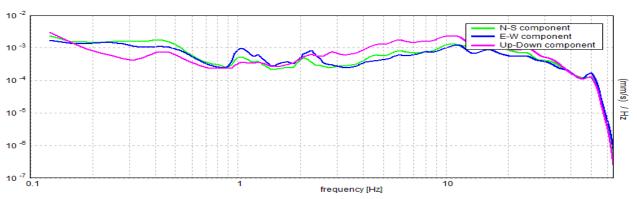
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h24'00". Analyzed 81% trace (manual window selection)


Sampling rate: 128 Hz Window size: 30 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.31 ± 0.02 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 0.31 ± 0.02 Hz (in the range 0.0 - 20.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
f ₀ > 10 / L _w	0.31 > 0.33		NO
$n_c(f_0) > 200$	365.6 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 16 times	OK	
Cuitoui	- for a alasa 110/ mask		
Criteri			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	•	OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	
[At least	5 out of 6 should be fulfilled] 0.156 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.156 Hz 0.594 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	0.156 Hz 0.594 Hz 3.53 > 2	OK	NO

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

MAZZANTA, T 37

Instrument: TZ3-0001/01-13

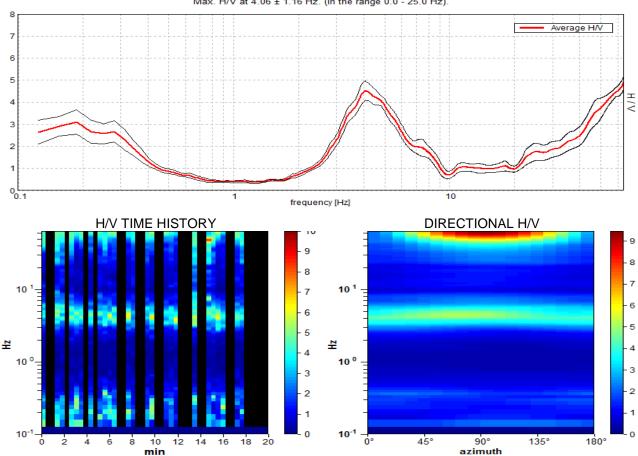
Data format: 32 byte Full scale [mV]: 51

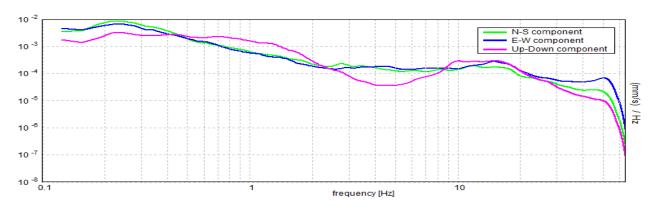
Start recording: 27/04/16 15:38:56 End recording: 27/04/16 15:58:56

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 52% trace (manual window selection)


Sampling rate: 128 Hz Window size: 25 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.06 ± 1.16 Hz. (In the range 0.0 - 25.0 Hz).

Max. H/V at 4.06 ± 1.16 Hz (in the range 0.0 - 25.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
f ₀ > 10 / L _w	$f_0 > 10 / L_w$ $4.06 > 0.40$ OK					
$n_c(f_0) > 200$	2539.1 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 196 times	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
	a for a clear H/V peak 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	2.969 Hz	OK				
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	6.375 Hz	OK				
A ₀ > 2	4.53 > 2	OK				
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.28615 < 0.05		NO			
$\sigma_f < \varepsilon(f_0)$	1.16247 < 0.20313		NO			
$\sigma_{A}(f_0) < \theta(f_0)$	0.4449 < 1.58	OK				

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

MAZZANTA, T 38

Instrument: TZ3-0001/01-13

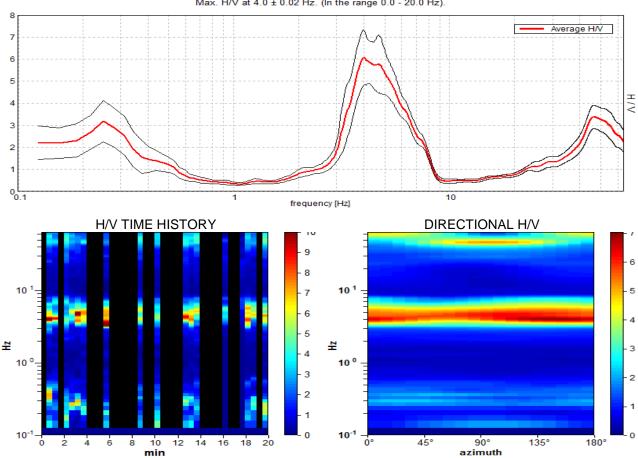
Data format: 32 byte Full scale [mV]: 51

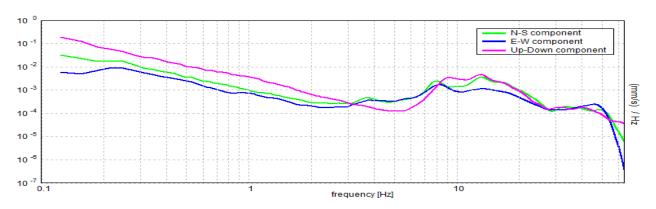
Start recording: 27/04/16 16:09:36 End recording: 27/04/16 16:29:36

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 42% trace (manual window selection)


Sampling rate: 128 Hz Window size: 30 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.0 ± 0.02 Hz. (In the range 0.0 - 20.0 Hz).

Max. H/V at 4.0 ± 0.02 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$ $4.00 > 0.33$ OK				
$n_c(f_0) > 200$	2040.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 193 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
		ОК		
[At least	5 out of 6 should be fulfilled]	OK OK		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 3.219 Hz			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 3.219 Hz 6.688 Hz	OK		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	3.219 Hz 6.688 Hz 6.06 > 2	OK OK		

curve should
00

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

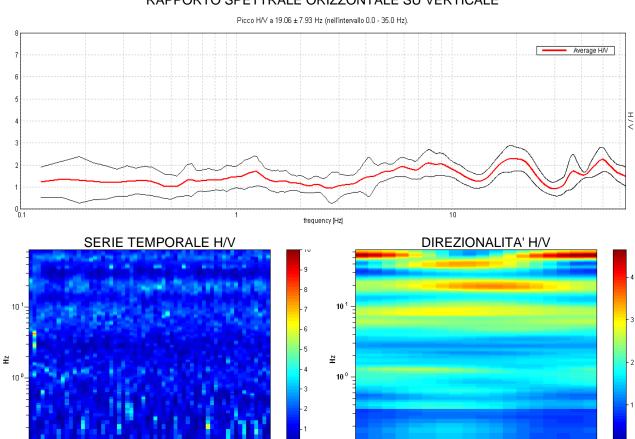
CASTIGLIONCELLO, T 39

Strumento: TRE-0005/00-06

Inizio registrazione: 27/03/13 16:06:51 Fine registrazione: 27/03/13 16:26:52

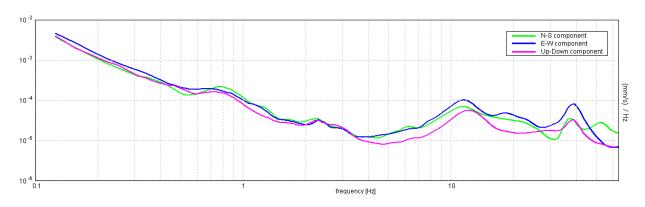
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile


Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

10⁻¹ -

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 19.06 ± 7.93 Hz (nell'intervallo 0.0 - 35.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]					
f ₀ > 10 / L _w	19.06 > 0.50	OK			
$n_c(f_0) > 200$	22875.0 > 200	OK			
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 916	OK			
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$					
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]				
			NO		
[Almeno 5 su 0		ОК	NO		
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	NO		
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	6 dovrebbero essere soddisfatti] 26.719 Hz		NO NO		
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f') < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f') < A_0 / 2$ $A_0 > 2$	26.719 Hz 2.29 > 2				

L _w	lunghezza della finestra
n_w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^{-1}) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$					
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

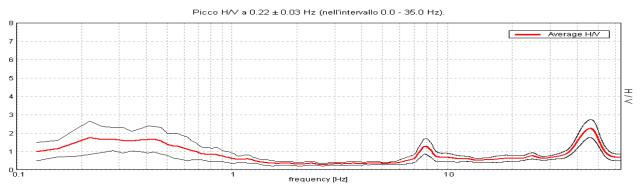
VADA, T 40

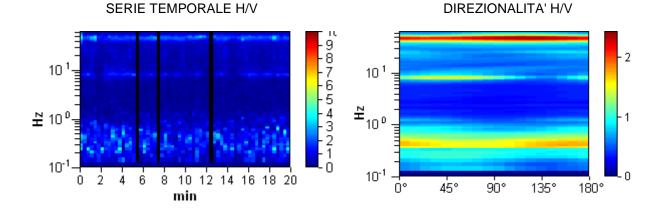
Strumento: TRE-0005/00-06

Inizio registrazione: 12/03/13 14:38:54 Fine registrazione: 12/03/13 14:58:55

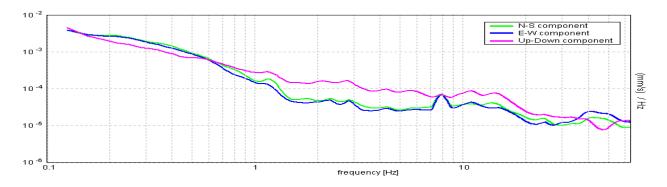
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

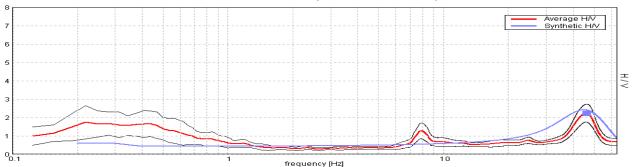

Durata registrazione: 0h20'00". Analizzato 95% tracciato (selezione manuale)


Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

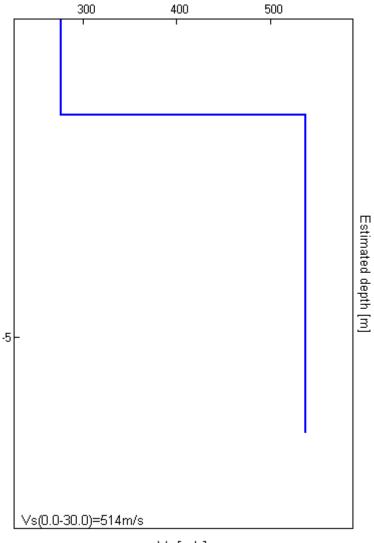
Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE



SPETTRI DELLE SINGOLE COMPONENTI


H/V SPERIMENTALE vs. H/V SINTETICO

Picco H/V a 0.22 ± 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
1.50	1.50	276	0.42
inf.	inf.	538	0.42

Vs(0.0-30.0)=514m/s

Vs [m/s]

Picco H/V a 45.81 ± 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

	una curva H/V affidabile vrebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	45.81 > 0.50	OK	
$n_c(f_0) > 200$	249.4 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 12	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
•	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK	
Esiste f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	0.75 Hz	OK	
A ₀ > 2	1.74 > 2		NO
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.07177 < 0.05		NO
			<u> </u>
$\sigma_{\rm f} < \varepsilon({\rm f}_0)$	0.0157 < 0.04375	OK	

L_{w}	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$						
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T41

Strumento: TRE-0005/00-06

Inizio registrazione: 12/03/13 14:12:03 Fine registrazione: 12/03/13 14:32:04

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

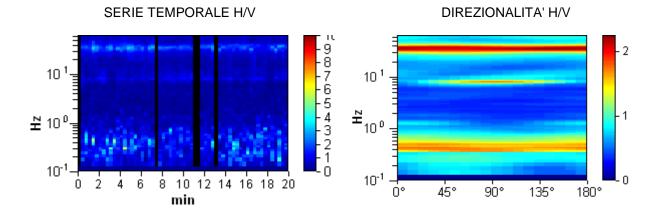
Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 92% tracciato (selezione manuale)

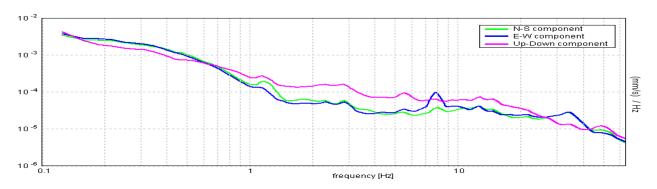
Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%

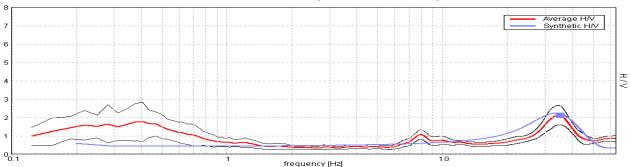

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Picco H/V a 34.66 ± 3.99 Hz (nell'intervallo 0.0 - 35.0 Hz).

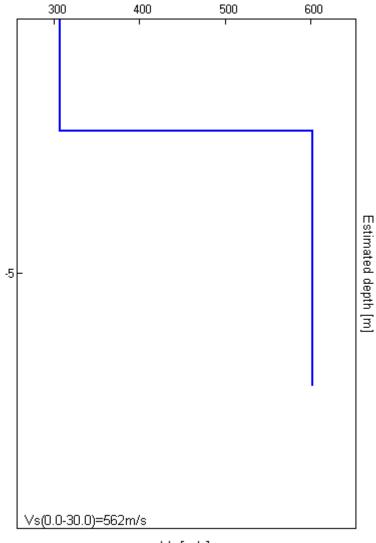

Awerage H/V

Amerage H/V

Frequency [Hz]



SPETTRI DELLE SINGOLE COMPONENTI


H/V SPERIMENTALE vs. H/V SINTETICO

Picco H/V a 34.66 \pm 3.99 Hz (nell'intervallo 0.0 - 35.0 Hz).

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
2.20	2.20	307	1.9
inf.	inf.	602	2.0

Vs(0.0-30.0)=562 m/s

Vs [m/s]

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 34.66 ± 3.99 Hz (nell'intervallo 0.0 - 35.0 Hz).

	una curva H/V affidabile rebbero risultare soddisfatti]		
f ₀ > 10 / L _w	34.66 > 0.50	OK	
$n_c(f_0) > 200$	38121.9 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 1494	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
0.11.	1107 . 1		
•	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
•	•	ок	
[Almeno 5 su 6	6 dovrebbero essere soddisfatti]	OK OK	
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 26.813 Hz		
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	26.813 Hz 42.375 Hz	OK	NO
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	26.813 Hz 42.375 Hz 2.13 > 2	OK	NO NO

I	lunghezza della finestra
L _W	
$n_{\rm w}$	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
` '	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$						
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

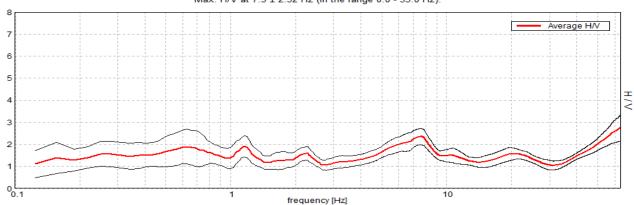
ROSIGNANO SOLVAY LOC. COTONE T42

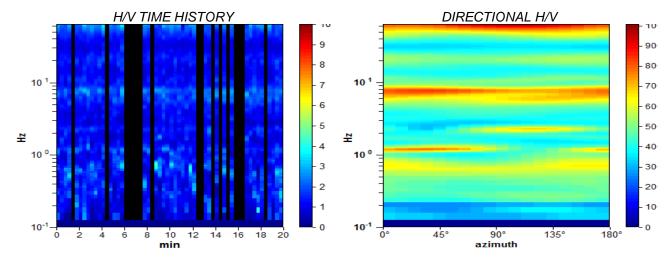
Instrument: TZ3-0001/01-13

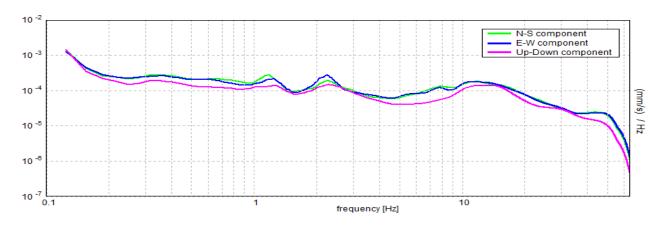
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 72% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 15%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 7.5 ± 2.32 Hz (in the range 0.0 - 35.0 Hz).

Max. H/V at 7.5 ± 2.32 Hz (in the range 0.0 - 35.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	7.50 > 0.50	OK	
$n_{c}(f_{0}) > 200$	6450.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 361 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	3.063 Hz	OK	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	27.25 Hz	OK	
$A_0 > 2$	2.35 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.3098 < 0.05		NO
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	2.3235 < 0.375		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.3673 < 1.58	OK	

L _w	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

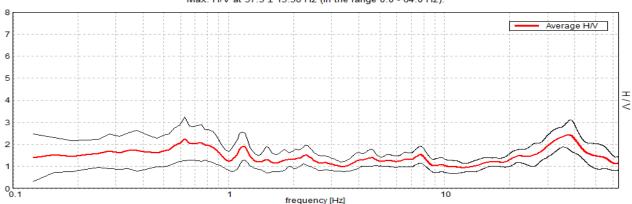
ROSIGNANO SOLVAY LOC. COTONE T43

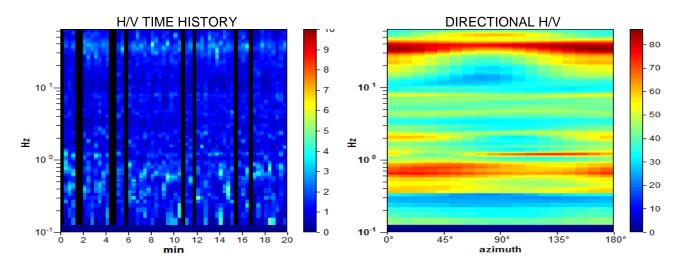
Instrument: TZ3-0001/01-13

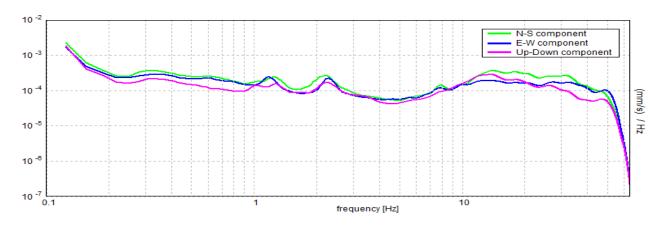
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 83% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 37.5 ± 15.58 Hz (in the range 0.0 - 64.0 Hz).

Max. H/V at 37.5 ± 15.58 Hz (in the range 0.0 - 64.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	37.50 > 0.50	OK	
$n_c(f_0) > 200$	37500.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1449	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	19.156 Hz	OK	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	58.75 Hz	OK	
$A_0 > 2$	2.42 > 2	OK	
•	2.42 > 2 0.41546 < 0.05	OK	NO
$A_0 > 2$ $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ $\sigma_f < \epsilon(f_0)$		OK	NO NO

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M.mo, T44

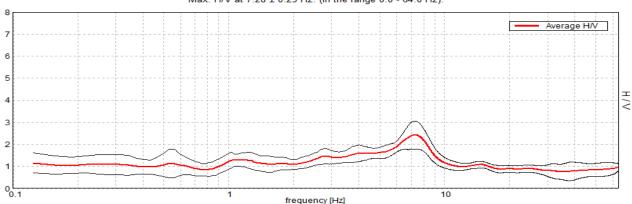
Strumento: TZ3-0001/01-13

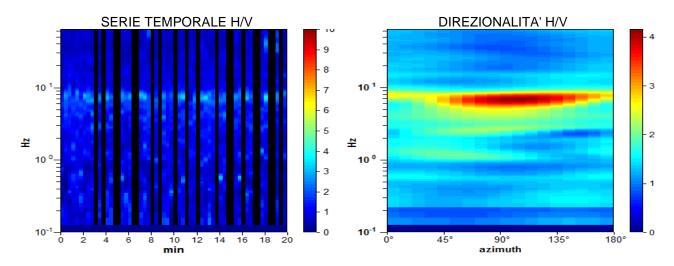
Inizio registrazione: 18/08/14 11:24:04 Fine registrazione: 18/08/14 11:44:04

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

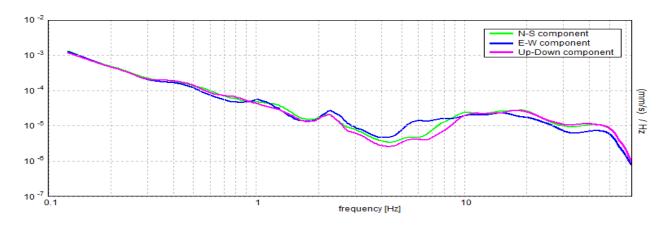
Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 67% tracciato (selezione manuale)


Freq. campionamento: 128 Hz Lunghezza finestre: 20 s


Tipo di lisciamento: Triangular window

Lisciamento: 15%


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 7.28 ± 0.29 Hz (nell'intervallo 0.0 - 64.0 Hz).

	una curva H/V affidabile rebbero risultare soddisfatti]		
f ₀ > 10 / L _w	7.28 > 0.50	OK	
$n_c(f_0) > 200$	5825.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 350	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5\text{Hz}$			
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	2.313 Hz	OK	
Esiste f $^{+}$ in [f ₀ , 4f ₀] A _{H/V} (f $^{+}$) < A ₀ / 2	9.781 Hz	OK	
A ₀ > 2	2.42 > 2	OK	
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.03922 < 0.05	OK	
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.28556 < 0.36406	OK	
$\sigma_{A}(f_0) < \theta(f_0)$	0.6425 < 1.58	OK	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	ılori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELNUOVO MIS. T45

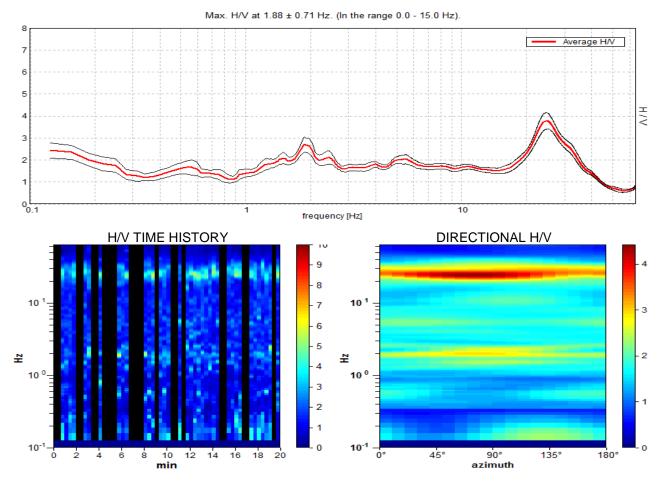
Instrument: TZ3-0001/01-13

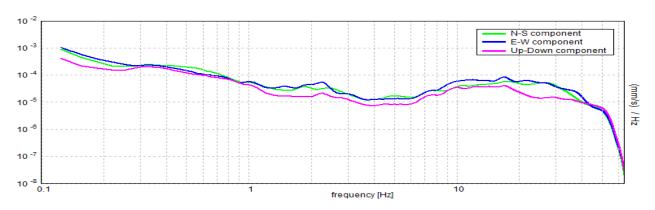
Data format: 32 byte Full scale [mV]: 51

Start recording: 21/05/13 11:36:52 End recording: 21/05/13 11:56:52

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 62% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.88 ± 0.71 Hz (in the range 0.0 - 15.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	1.88 > 0.50	OK	
$n_c(f_0) > 200$	1387.5 > 200	oK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 91 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	0.938 Hz	OK	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO
A ₀ > 2	2.70 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.37809 < 0.05		NO
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.70891 < 0.1875		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.3499 < 1.78	OK	

L_{w}	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T46

Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

Start recording: 30/09/16 20:11:50 End recording: 30/09/16 20:31:50

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 78% trace (manual window selection)

12 14 16 18 20

10

min

Sampling rate: 128 Hz Window size: 20 s

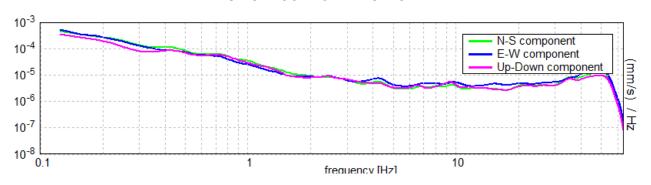
Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO Max. H/V at 0.25 ± 0.07 Hz. (In the range 0.0 - 40.0 Hz). 8 7 Average H/V 6 5 I 4 \geq 3 2 10 frequency [Hz] DIRECTIONAL H/V H/V TIME HISTORY 9 8 7 10¹ 10¹ 6 5 **4**00 4 **40**0 3 2 1 0

SINGLE COMPONENT SPECTRA

10⁻¹


45°

90°

azimuth

135°

180°

Max. H/V at 0.25 ± 0.07 Hz (in the range 0.0 - 40.0 Hz).

01110110	for a reliable H/V curve		
f ₀ > 10 / L _w	0.25 > 0.50		NO
n _c (f ₀) > 200	235.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 13 times	OK	
Crit <u>eri</u> :			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
		OK	
[At least	5 out of 6 should be fulfilled]	ОК	NO
[At least Exists f in [f ₀ /4, f ₀] $A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	ОК	NO NO
[At least Exists f in [f ₀ /4, f ₀] $A_{H/V}(f) < A_0 / 2$ Exists f in [f ₀ , 4f ₀] $A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.094 Hz	OK	_
[At least Exists f in [f ₀ /4, f ₀] $A_{H/V}(f \cdot) < A_0 / 2$ Exists f in [f ₀ , 4f ₀] $A_{H/V}(f \cdot) < A_0 / 2$ $A_0 > 2$	0.094 Hz 1.76 > 2	ОК	NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Ào	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f =	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/∨} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ _f and σ _A (f ₀)		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

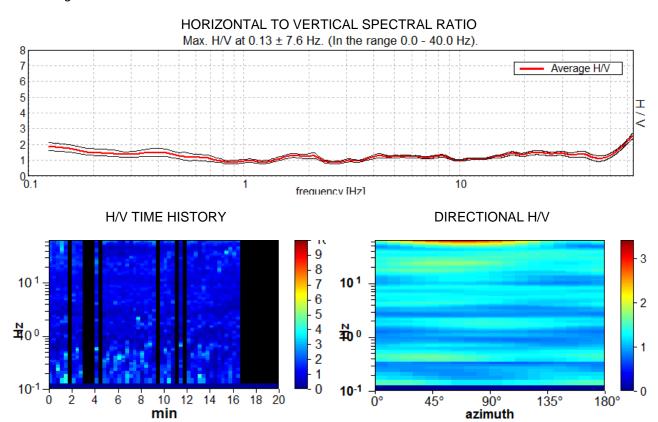
GABBRO, T47

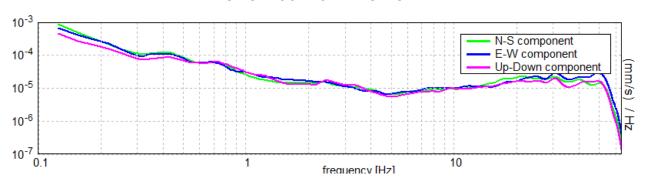
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

Start recording: 30/09/16 19:18:50 End recording: 30/09/16 19:38:50

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN


GPS data not available


Trace length: 0h20'00". Analyzed 70% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

Max. H/V at 0.13 ± 7.6 Hz (in the range 0.0 - 40.0 Hz).

0.110.10	for a reliable H/V curve		
$f_0 > 10 / L_w$	0.13 > 0.50		NO
n _c (f ₀) > 200	105.0 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 7 times	OK	
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]		l
Criteri	•	OK	
Criteri [At least	5 out of 6 should be fulfilled]	OK	NO
Criterian [At least Exists f in [f ₀ /4, f ₀] $A_{H/V}(f^{-}) < A_{0} / 2$	5 out of 6 should be fulfilled]	OK	NO NO
Exists f in [f ₀ /4, f ₀] $A_{H/V}(f^{-}) < A_{0} / 2$ Exists f in [f ₀ , 4f ₀] $A_{H/V}(f^{+}) < A_{0} / 2$	5 out of 6 should be fulfilled] 0.094 Hz	OK	_
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.094 Hz 1.88 > 2	OK	NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Ào	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/∨} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ _f and σ _A (f ₀)		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 48

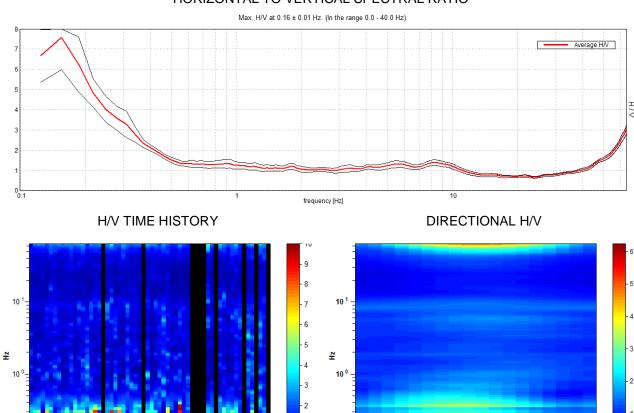
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

Start recording: 04/10/16 14:50:29 End recording: 04/10/16 15:10:29

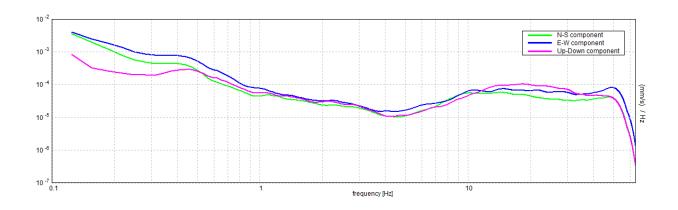
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 83% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

azimuth

Max. H/V at 0.16 ± 0.01 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve I 3 should be fulfilled]		
$f_0 > 10 / L_w$	0.16 > 0.50		NO
$n_c(f_0) > 200$	156.3 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 8 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteria	a for a clear H/V neak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	<u>•</u>	ОК	
[At least s	5 out of 6 should be fulfilled]	OK OK	
[At least 8] Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.094 Hz		
[At least section is the section of the section of the section in	5 out of 6 should be fulfilled] 0.094 Hz 0.281 Hz	OK	NO
[At least section of the section of	0.094 Hz 0.281 Hz 7.59 > 2	OK	NO

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 49

Instrument: TZ3-0001/01-13

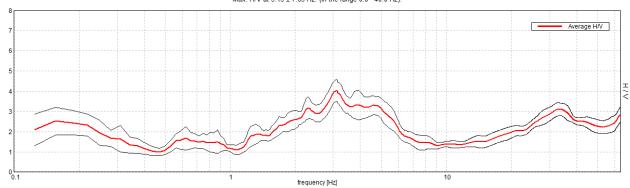
Data format: 32 byte Full scale [mV]: 51

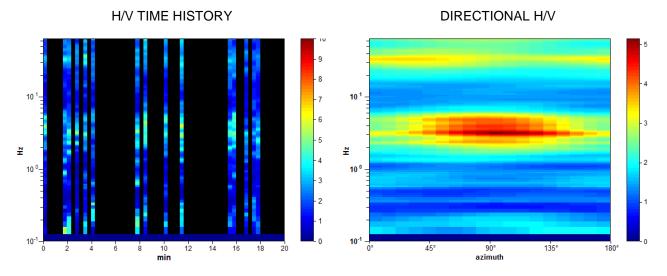
Start recording: 02/11/16 16:08:46 End recording: 02/11/16 16:28:46

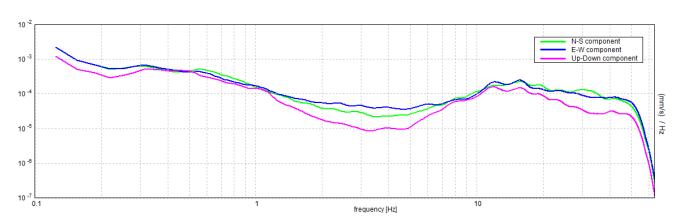
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 25% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 3.13 \pm 7.63 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 3.13 ± 7.63 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
$f_0 > 10 / L_w$	3.13 > 0.50	OK	
$n_c(f_0) > 200$	937.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 151 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	1.563 Hz	OK	
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	6.125 Hz	OK	
A ₀ > 2	4.02 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	2.44067 < 0.05		NO
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	7.62709 < 0.15625		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.5445 < 1.58	OK	

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

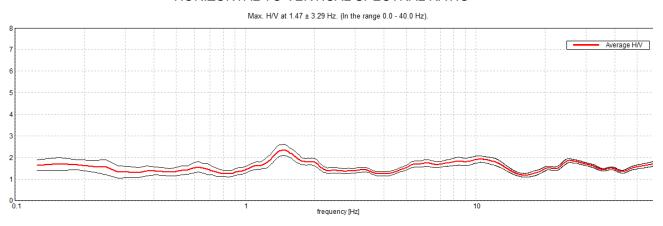
NIBBIAIA, T 50

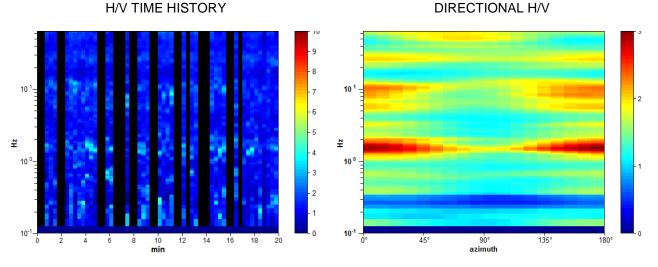
Instrument: TZ3-0001/01-13

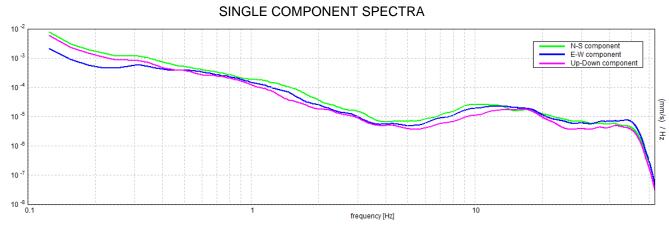
Data format: 32 byte Full scale [mV]: 51

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 63% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.47 \pm 3.29 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	1.47 > 0.50	OK	
$n_c(f_0) > 200$	1116.3 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 72 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$			NO
Exists f $^+$ in [f ₀ , 4f ₀] A _{H/V} (f $^+$) < A ₀ / 2			NO
A ₀ > 2	2.35 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	2.24203 < 0.05		NO
	3,29299 < 0,14688		
$\sigma_{\rm f} < \varepsilon({\rm f}_0)$	0.20200 10.1.1000		NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 51

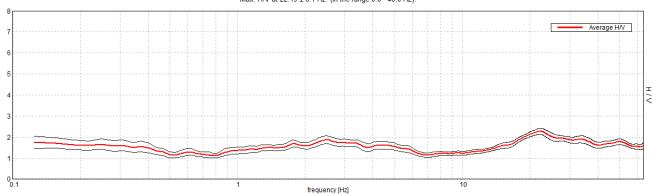
Instrument: TZ3-0001/01-13

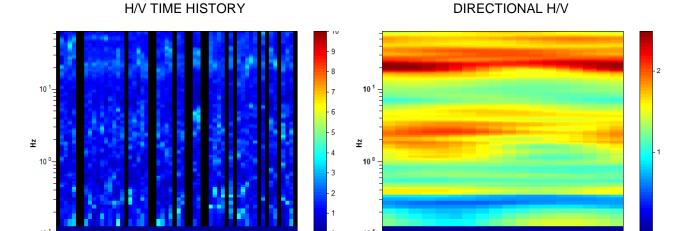
Data format: 32 byte Full scale [mV]: 51

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

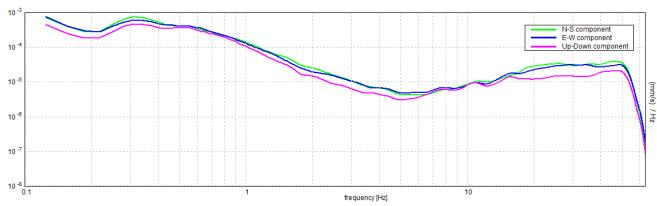
Trace length: 0h20'00". Analyzed 72% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 22.19 \pm 6.1 Hz. (In the range 0.0 - 40.0 Hz).

SINGLE COMPONENT SPECTRA

90° azimuth 135°

Max. H/V at 22.19 \pm 6.1 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve I 3 should be fulfilled]		
$f_0 > 10 / L_w$	22.19 > 0.50	OK	
$n_c(f_0) > 200$	19081.3 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1066	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times		
(TITATI			
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
			NO
[At least t			NO NO
[At least f Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$		OK	
[At least f^{-} in $[f_0/4, f_0] \mid A_{H/V}(f^{-}) < A_0 / 2$ Exists f^{+} in $[f_0, 4f_0] \mid A_{H/V}(f^{+}) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled]	ок	
[At least f^- in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$ Exists f^+ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	5 out of 6 should be fulfilled] 2.27 > 2	OK	NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 52

Instrument: TZ3-0001/01-13

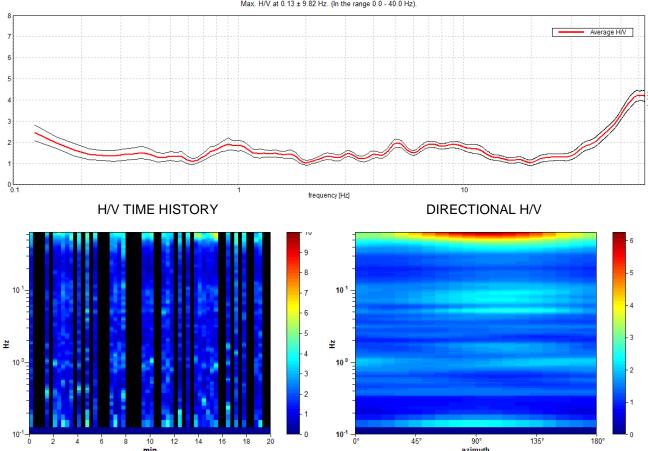
Data format: 32 byte Full scale [mV]: 51

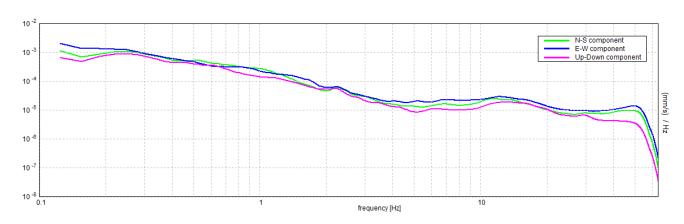
Start recording: 07/11/16 15:41:45 End recording: 07/11/16 16:01:45

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 55% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.13 ± 9.82 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 0.13 ± 9.82 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.13 > 0.50		NO		
$n_c(f_0) > 200$	82.5 > 200		NO		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 7 times	OK			
			1		
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
		ОК			
[At least section [f ₀ /4, f ₀] $A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK	NO		
[At least s	5 out of 6 should be fulfilled]	OK OK	NO		
[At least section of the section of	5 out of 6 should be fulfilled] 0.094 Hz		NO NO		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	0.094 Hz 2.45 > 2				

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T53

Instrument: TZ3-0001/01-13

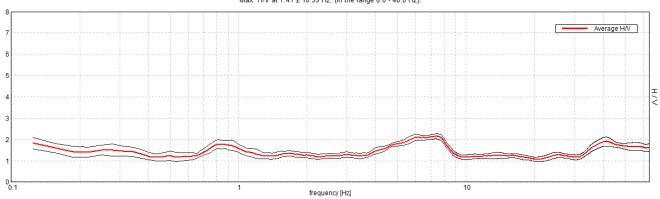
Data format: 32 byte Full scale [mV]: 51

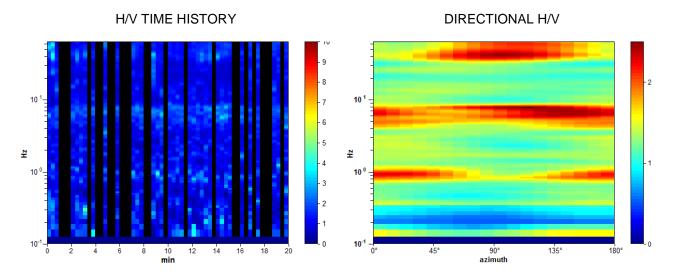
Start recording: 07/11/16 17:14:25 End recording: 07/11/16 17:34:25

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

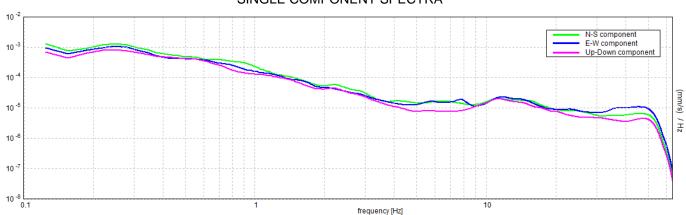
GPS data not available

Trace length: 0h20'00". Analyzed 60% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 7.41 ± 10.99 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 7.41 ± 10.99 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	OK			
$n_c(f_0) > 200$	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 356 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	19.969 Hz	OK		
A ₀ > 2	2.16 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.48376 < 0.05		NO	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ $\sigma_f < \epsilon(f_0)$	1.48376 < 0.05 10.98912 < 0.37031		NO NO	

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 54

Instrument: TZ3-0001/01-13

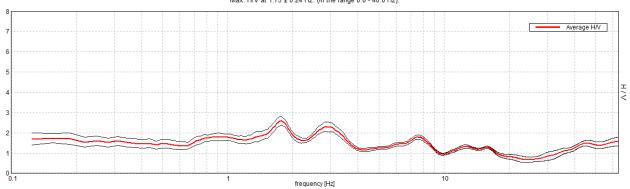
Data format: 32 byte Full scale [mV]: 51

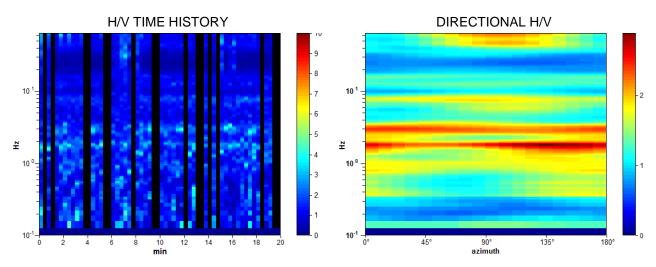
Start recording: 07/11/16 17:54:52 End recording: 07/11/16 18:14:52

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

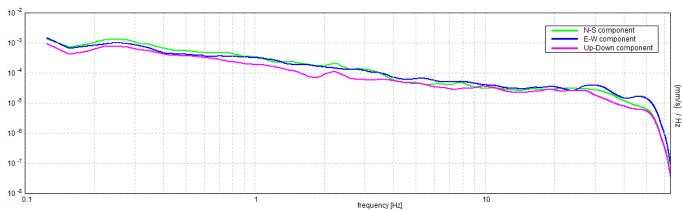
GPS data not available

Trace length: 0h20'00". Analyzed 72% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.75 \pm 0.24 Hz. (In the range 0.0 - 40.0 Hz).

SINGLE COMPONENT SPECTRA

Max. H/V at 1.75 ± 0.24 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
$f_0 > 10 / L_w$	1.75 > 0.50	OK	
$n_c(f_0) > 200$	1505.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 85 times	OK	
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	•		NO
[At least	•	ОК	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	OK OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 3.875 Hz		NO NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 3.875 Hz 2.59 > 2		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 55

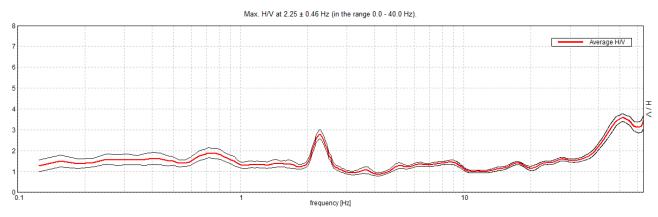
Instrument: TZ3-0001/01-13

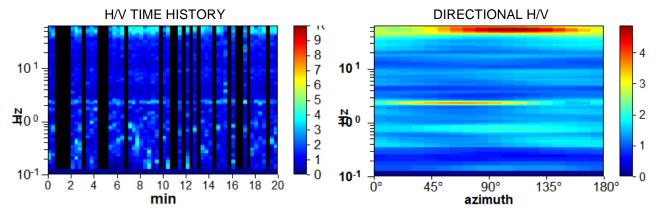
Data format: 32 byte Full scale [mV]: 51

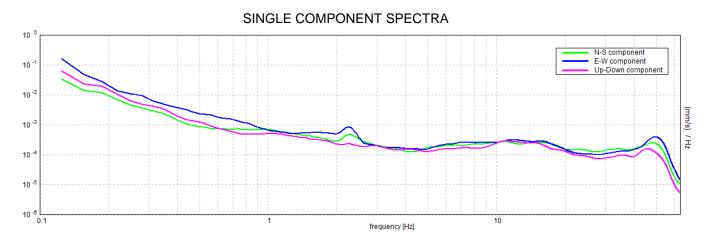
Start recording: 07/11/16 19:03:51 End recording: 07/11/16 19:23:51

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 65% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 2.25 ± 0.46 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$ 2.25 > 0.50 OK					
$n_c(f_0) > 200$	1755.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 109 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	1.969 Hz	OK			
	1.0001.2	OIL			
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	2.594 Hz	OK			
Exists f^+ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	2.594 Hz	OK	NO		
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	2.594 Hz 2.78 > 2	OK	NO NO		

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CHIOMA, T 56

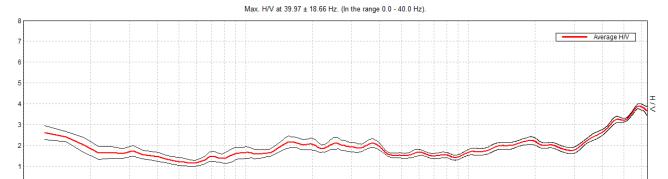
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

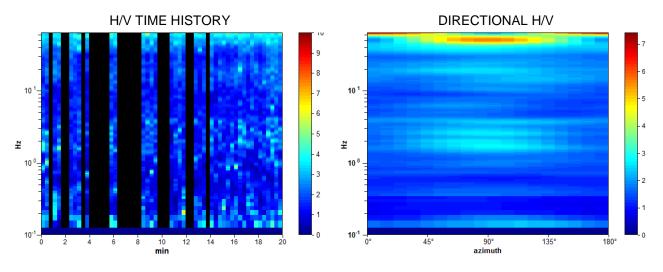
Start recording: 07/11/16 13:43:36 End recording: 07/11/16 14:03:36

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

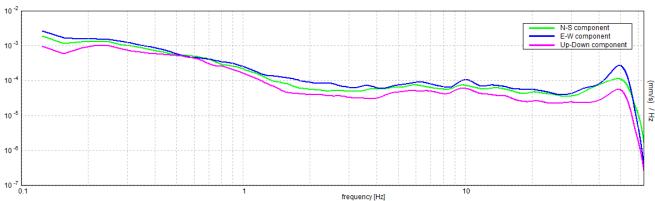
GPS data not available


Trace length: 0h20'00". Analyzed 65% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

frequency [Hz]

Max. H/V at 39.97 ± 18.66 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.97 > 0.50	OK		
$n_c(f_0) > 200$	31175.6 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times			
Criteria				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	-		NO	
[At least 5	-		NO NO	
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	-	OK		
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	ок		
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 2.62 > 2	OK	NO	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CHIOMA, T 57

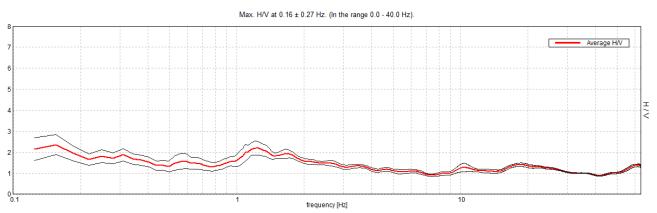
Instrument: TZ3-0001/01-13

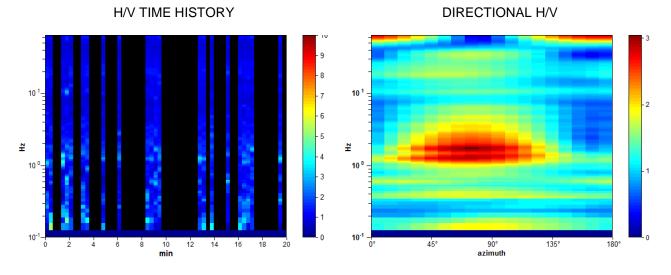
Data format: 32 byte Full scale [mV]: 51

Start recording: 07/11/16 12:52:08 End recording: 07/11/16 13:12:08

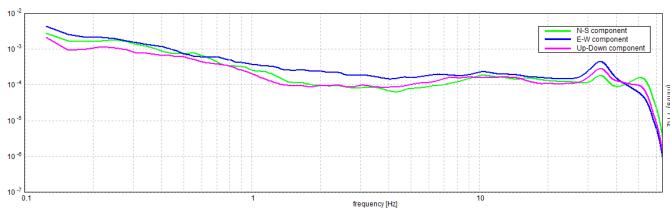
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 37% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

Max. H/V at 0.16 ± 0.27 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.16 > 0.50		NO		
$n_c(f_0) > 200$	68.8 > 200		NO		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 8 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
			<u> I </u>		
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
	•	OK			
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK	NO		
[At least	5 out of 6 should be fulfilled]	OK OK	NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.094 Hz		NO NO		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.094 Hz 2.37 > 2				

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$ 3.0 2.5 2.0 1.78 1.58						
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CHIOMA, T 58

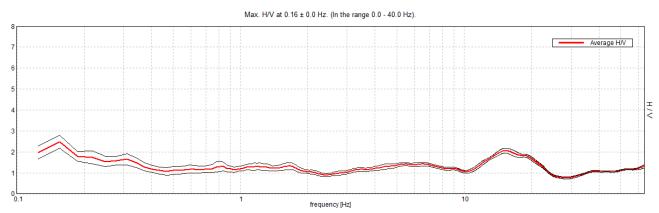
Instrument: TZ3-0001/01-13

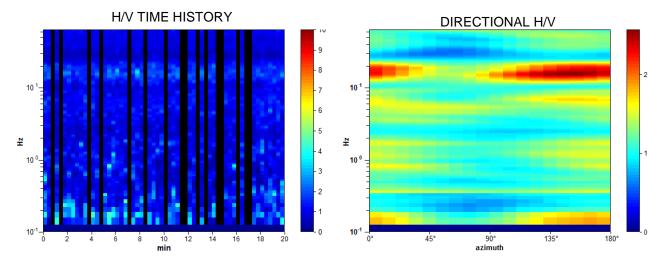
Data format: 32 byte Full scale [mV]: 51

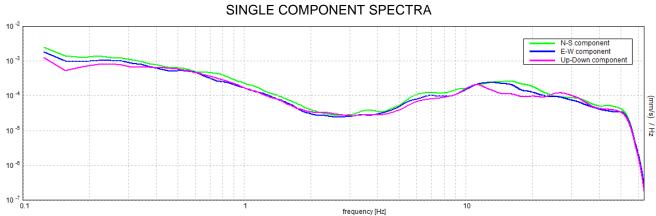
Start recording: 07/11/16 14:20:01 End recording: 07/11/16 14:40:01

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.16 ± 0.0 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	0.16 > 0.50		NO	
$n_c(f_0) > 200$	137.5 > 200		NO	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 8 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] \mid A_{HM}(f) < A_0/2$ 0.094 Hz OK				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	0.094 Hz 0.406 Hz	OK OK		
	0.000			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	0.406 Hz	OK		
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	0.406 Hz 2.47 > 2	OK OK		

1	window length
L _W	O Company of the comp
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
.,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$ 3.0 2.5 2.0 1.78 1.58					
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CHIOMA, T 59

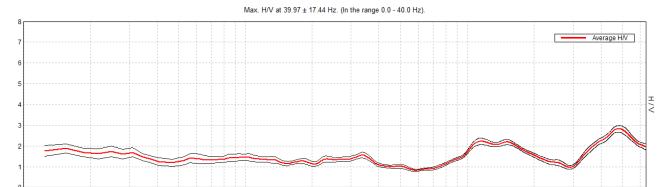
Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51

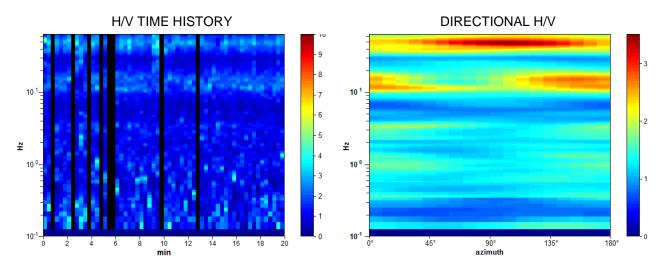
Start recording: 07/11/16 14:56:29 End recording: 07/11/16 15:16:29

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

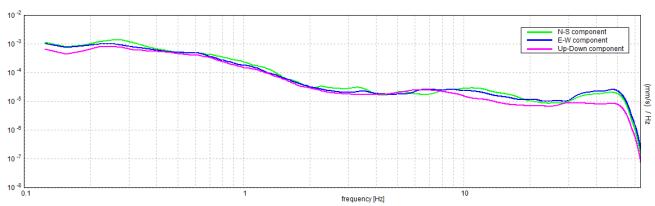
GPS data not available


Trace length: 0h20'00". Analyzed 87% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

frequency [Hz]

SINGLE COMPONENT SPECTRA

Max. H/V at 39.97 ± 17.44 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	39.97 > 0.50	OK			
$n_{c}(f_{0}) > 200$	41567.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	30.938 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
$A_0 > 2$					
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.43642 < 0.05			NO		
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	17.44306 < 1.99844		NO		
$\sigma_{A}(f_0) < \theta(f_0)$	0.134 < 1.58	OK			

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
-	standard deviation of H/V peak frequency
σ_{f}	· · · · · · · · · · · · · · · · · · ·
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_0) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(\hat{f}^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
3/(1)	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
9	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
$\Theta(f_0)$	The short value for the stability condition $O_A(1) < O(1_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CHIOMA, T 60

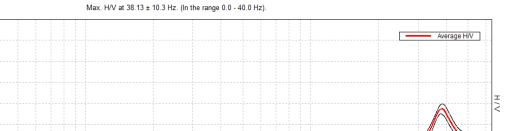
Instrument: TZ3-0001/01-13

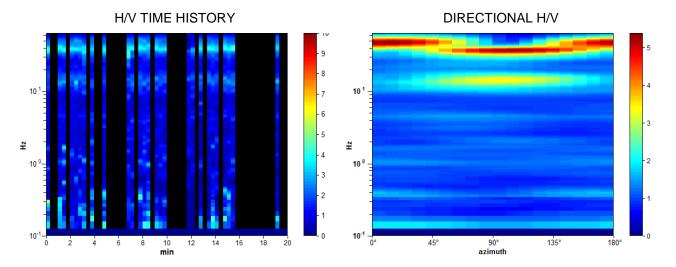
Data format: 32 byte Full scale [mV]: 51

Start recording: 07/11/16 11:50:12 End recording: 07/11/16 12:10:12

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

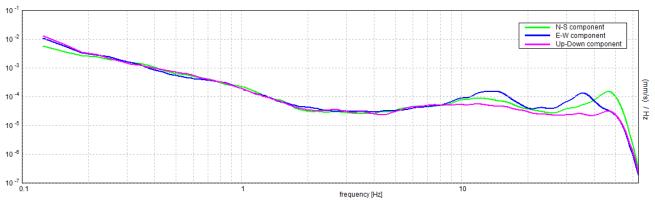
GPS data not available


Trace length: 0h20'00". Analyzed 45% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

frequency [Hz]

Max. H/V at 38.13 ± 10.3 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	38.13 > 0.50	OK			
$n_c(f_0) > 200$	20587.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1439	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	29.156 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	54.0 Hz	OK			
A ₀ > 2					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.27026 < 0.05					
$\sigma_{\rm f} < \varepsilon({\rm f}_0)$	10.30373 < 1.90625		NO		
$\sigma_{A}(f_{0}) < \theta(f_{0})$ 0.2356 < 1.58 OK					

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$ 3.0 2.5 2.0 1.78 1.58					
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T61

Instrument: TZ3-0001/01-13

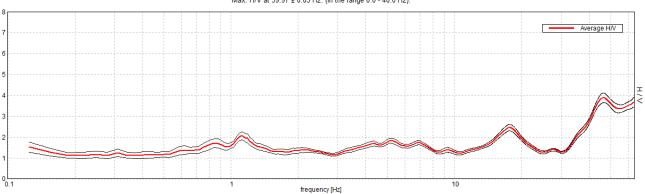
Data format: 32 byte Full scale [mV]: 51

Start recording: 30/09/16 17:36:48 End recording: 30/09/16 17:56:48

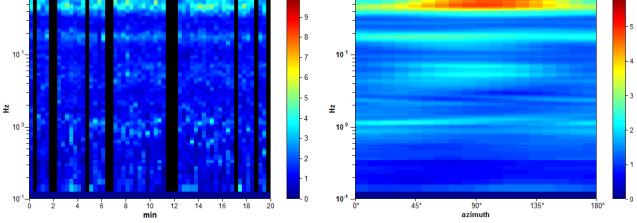
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

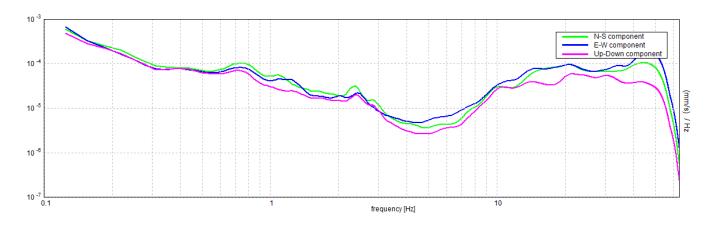
Trace length: 0h20'00". Analyzed 80% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.97 \pm 0.03 Hz. (In the range 0.0 - 40.0 Hz).

H/V TIME HISTORY DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

Max. H/V at 39.97 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	39.97 > 0.50	OK	
$n_c(f_0) > 200$	38370.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	-	ок	
[At least	5 out of 6 should be fulfilled]	ОК	NO
[At least : Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO
[At least section of the section of	5 out of 6 should be fulfilled] 31.781 Hz	-	NO
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	31.781 Hz 2.74 > 2	OK	NO

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 62

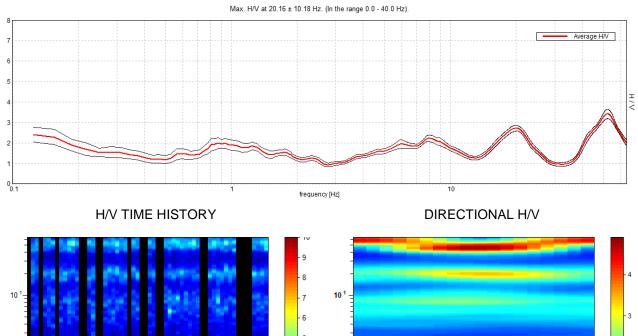
Instrument: TZ3-0001/01-13

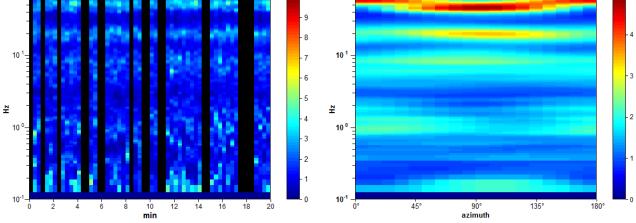
Data format: 32 byte Full scale [mV]: 51

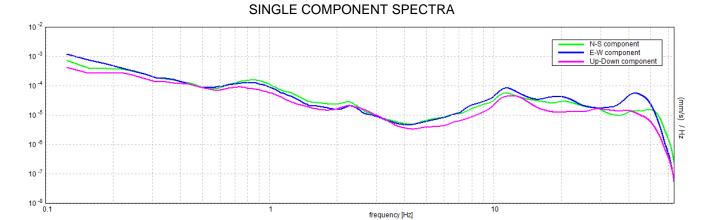
Start recording: 27/03/13 16:29:02 End recording: 27/03/13 16:49:02

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 70% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 20.16 ± 10.18 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	20.16 > 0.50	OK	
$n_c(f_0) > 200$	16931.3 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 968 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Critori	a for a cloar H/V neak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
		ОК	
[At least	5 out of 6 should be fulfilled]	OK OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 13.938 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 13.938 Hz 26.313 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 13.938 Hz 26.313 Hz 2.72 > 2	OK	NO NO

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
-	standard deviation of H/V peak frequency
σ_{f}	· · · · · · · · · · · · · · · · · · ·
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_0) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(\hat{f}^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
3/(1)	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
9	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
$\Theta(f_0)$	The short value for the stability condition $O_A(1) < O(1_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

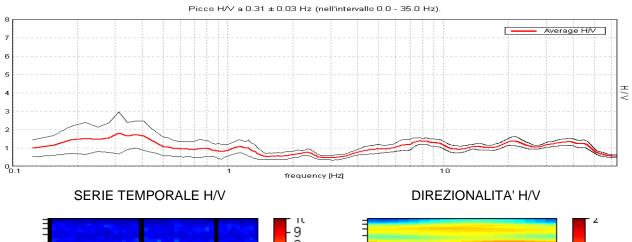
VADA EST, T63

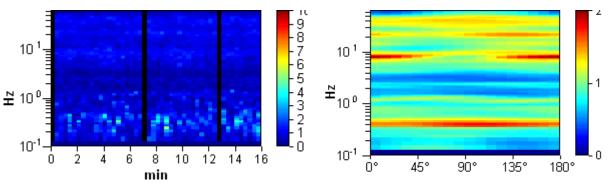
Strumento: TRE-0005/00-06

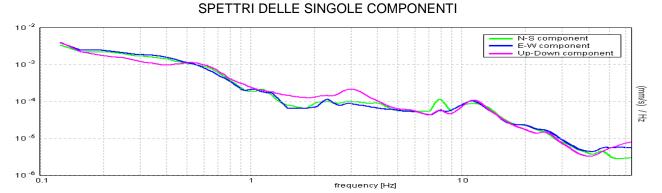
Inizio registrazione: 12/03/13 12:29:16 Fine registrazione: 12/03/13 12:45:17

NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

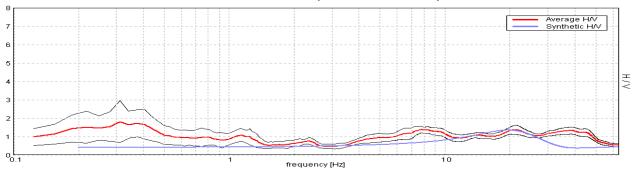

Durata registrazione: 0h16'00". Analizzato 94% tracciato (selezione manuale)

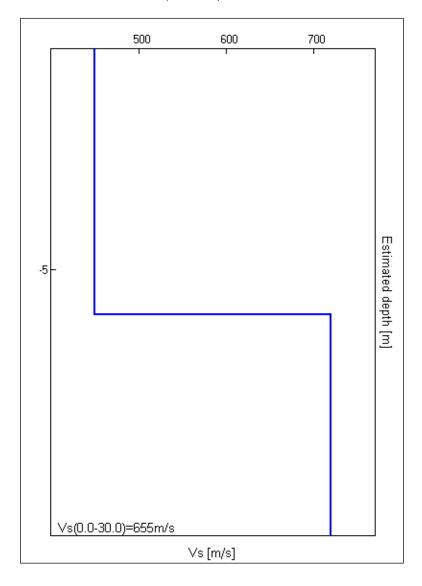

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s


Tipo di lisciamento: Triangular window

Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE




H/V SPERIMENTALE vs. H/V SINTETICO

Picco H/V a 0.31 \pm 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
6.00	6.00	450	0.49
inf.	inf.	720	0.45

Vs(0.0-30.0)=655m/s

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 0.31 \pm 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

	una curva H/V affidabile rebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	0.31 > 0.50		NO
$n_c(f_0) > 200$	281.3 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 16	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
[Almeno 5 su 6		ОК	
	6 dovrebbero essere soddisfatti]	OK OK	
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 0.094 Hz		NO
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	0.094 Hz 0.844 Hz		NO
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	0.094 Hz 0.844 Hz 1.81 > 2	OK	NO

L _w	lunghezza della finestra
$n_{\rm w}$	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

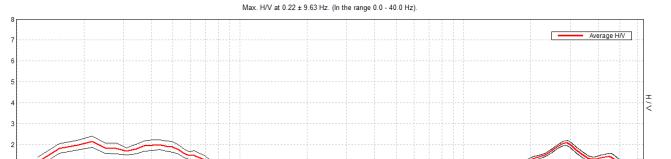
	Va	llori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13

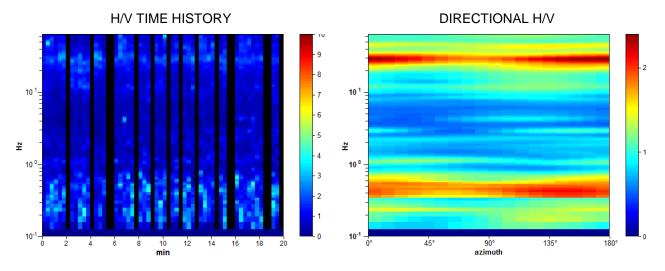
Data format: 32 byte Full scale [mV]: 51

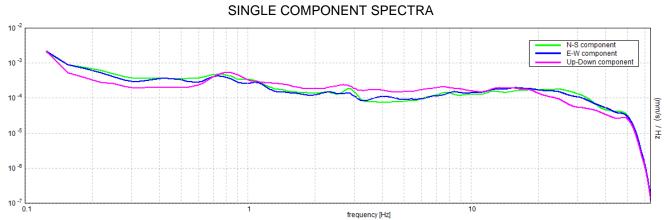
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 75% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

frequency [Hz]

Max. H/V at 0.22 ± 9.63 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
f ₀ > 10 / L _w	0.22 > 0.50		NO
$n_c(f_0) > 200$	196.9 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 12 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	•	ОК	
[At least	5 out of 6 should be fulfilled]	OK OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.094 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.094 Hz 0.75 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	0.094 Hz 0.75 Hz 2.14 > 2	OK	NO NO

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

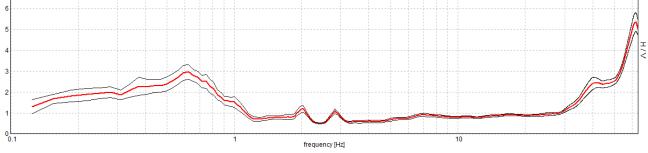
Instrument: TZ3-0001/01-13

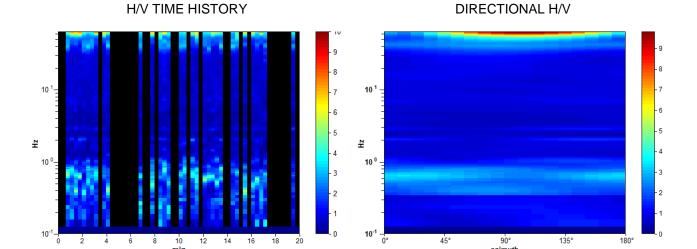
Data format: 32 byte

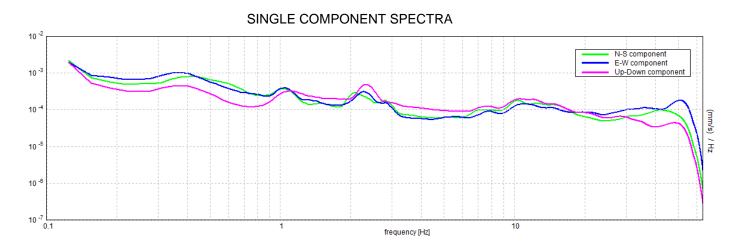
Full scale [mV]: 51
Start recording: 15/11/16 12:26:10 End recording: 15/11/16 12:46:10 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 53% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO Max. H/V at 0.63 ± 0.01 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 0.63 ± 0.01 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve		
$f_0 > 10 / L_w$	0.63 > 0.50	OK	
$n_c(f_0) > 200$	400.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 31 times	OK	
27()			
Criteria	a for a clear H/V peak 5 out of 6 should be fulfilled]		
Criteria [At least Exists f ⁻ in [f ₀ /4, f ₀] $A_{H/V}(f^-) < A_0 / 2$	•		NO
Criteria [At least	•	ОК	NO
Criteria [At least Exists f ⁻ in [f ₀ /4, f ₀] $A_{H/V}(f^-) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 1.031 Hz		NO
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 1.031 Hz 2.96 > 2	OK	NO

L_{w}	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

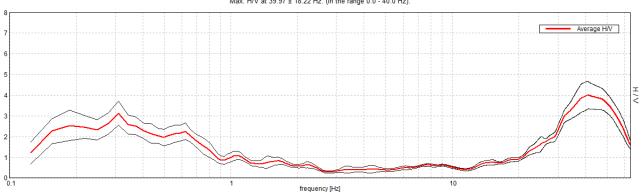
Instrument: TZ3-0001/01-13

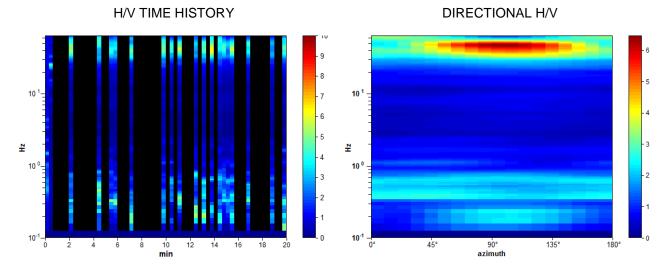
Data format: 32 byte

Full scale [mV]: 51
Start recording: 15/11/16 13:19:38 End recording: 15/11/16 13:39:38 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

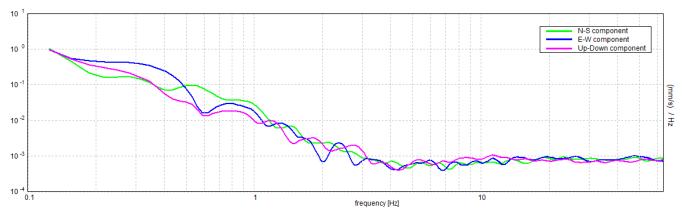
GPS data not available

Trace length: 0h20'00". Analyzed 33% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 39.97 ± 18.22 Hz. (In the range 0.0 - 40.0 Hz).

SINGLE COMPONENT SPECTRA

Max. H/V at 39.97 ± 18.22 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.97 > 0.50	OK		
$n_c(f_0) > 200$	15987.5 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	28.844 Hz	OK		
Exists f + in [f ₀ , 4f ₀] $A_{H/V}(f +) < A_0 / 2$	61.531 Hz	OK		
A ₀ > 2	3.95 > 2	OK		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.45593 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	18.22302 < 1.99844		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.6856 < 1.58	OK		

1	window length
L _W	
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

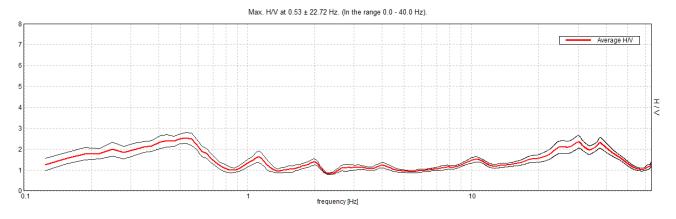
Instrument: TZ3-0001/01-13

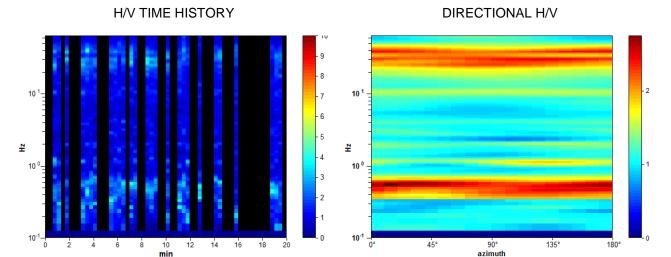
Data format: 32 byte

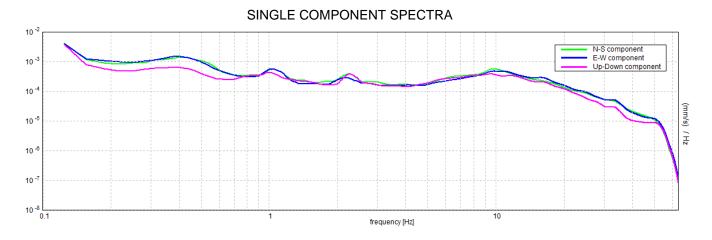
Full scale [mV]: 51 Start recording: 15/11/16 14:05:48 End recording: 15/11/16 14:25:48

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 45% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.53 ± 22.72 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
$f_0 > 10 / L_w$	0.53 > 0.50	OK	
$n_c(f_0) > 200$	286.9 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 26 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Critori	a for a clear H/V neak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
		ОК	
[At least	5 out of 6 should be fulfilled]	OK OK	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.125 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.125 Hz 0.75 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.125 Hz 0.75 Hz 2.53 > 2	OK	NO NO

1	window length
L _W	9
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
.,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13

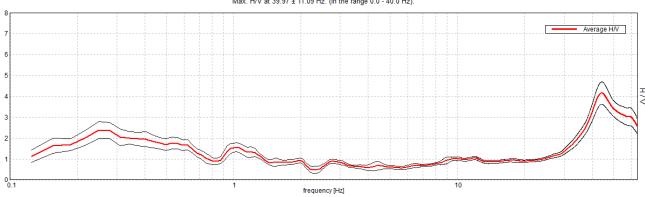
Data format: 32 byte

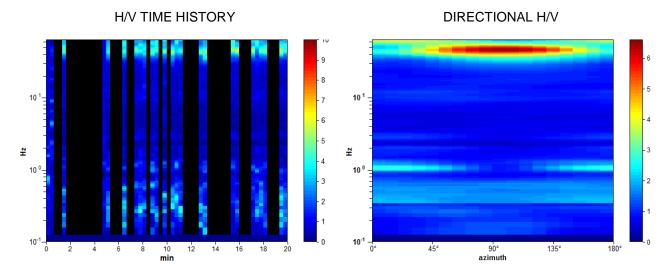
Full scale [mV]: 51
Start recording: 15/11/16 14:40:34 End recording: 15/11/16 15:00:34

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

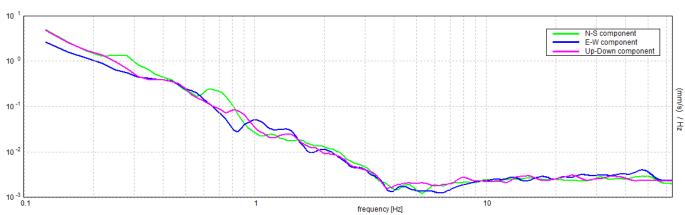
GPS data not available

Trace length: 0h20'00". Analyzed 42% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 39.97 ± 11.09 Hz. (In the range 0.0 - 40.0 Hz).

SINGLE COMPONENT SPECTRA

Max. H/V at 39.97 ± 11.09 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.97 > 0.50	OK		
$n_c(f_0) > 200$	19984.4 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	31.938 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$		·	NO	
A ₀ > 2	3.19 > 2	OK		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.27754 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	11.09278 < 1.99844		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.395 < 1.58	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

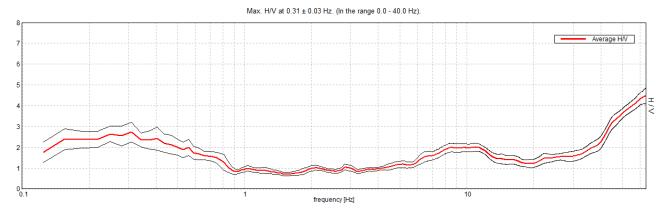
Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

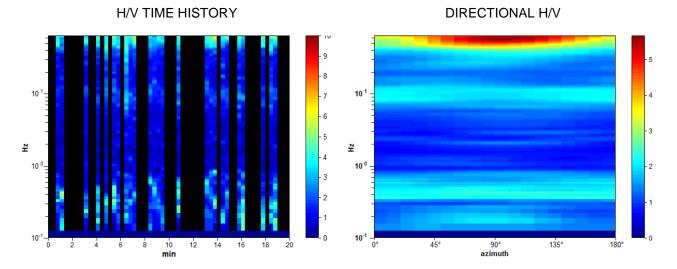
Instrument: TZ3-0001/01-13

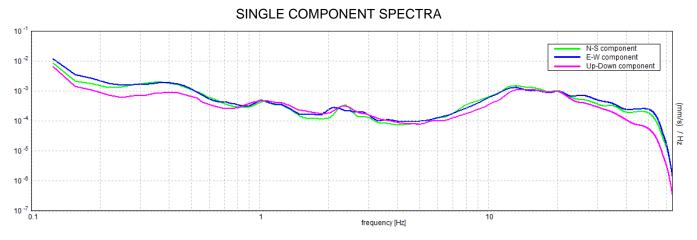
Data format: 32 byte

Full scale [mV]: 51
Start recording: 15/11/16 15:19:37 End recording: 15/11/16 15:39:37 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 42% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.31 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

	for a reliable H/V curve Il 3 should be fulfilled]		
f ₀ > 10 / L _w	0.31 > 0.50		NO
$n_c(f_0) > 200$	156.3 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 16 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
[At least	•	ОК	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	
[At least	5 out of 6 should be fulfilled] 0.094 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 0.094 Hz 0.813 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	0.094 Hz 0.813 Hz 2.73 > 2	OK	NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13

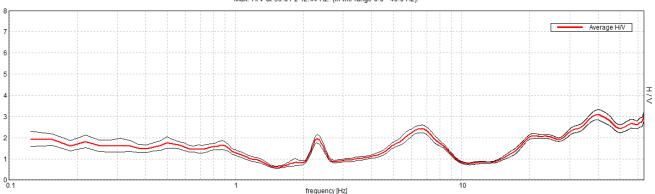
Data format: 32 byte

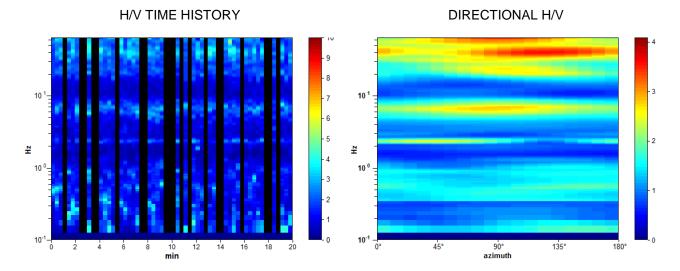
Full scale [mV]: 51
Start recording: 15/11/16 15:52:38 End recording: 15/11/16 16:12:38

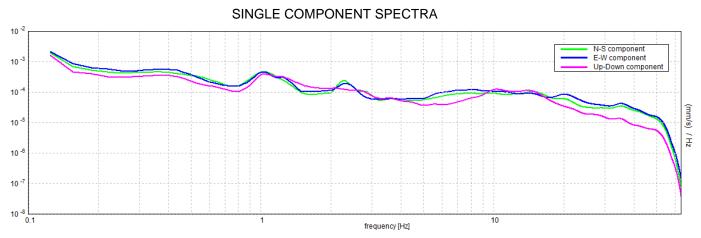
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

0h20'00". Trace length: Analyzed 67% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 39.81 ± 12.44 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 39.81 ± 12.44 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.81 > 0.50	OK		
$n_c(f_0) > 200$	31850.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1412	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	17.969 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$		·	NO	
A ₀ > 2	3.08 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.31242 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	12.4384 < 1.99063		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.2399 < 1.58	OK		

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
_	standard deviation of H/V peak frequency
σ_{f}	· · · · · · · · · · · · · · · · · · ·
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - '	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_0) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(\hat{f}^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
3/(1)	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
9	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
$\theta(f_0)$	The short value for the stability condition $O_A(1) < O(1_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T71

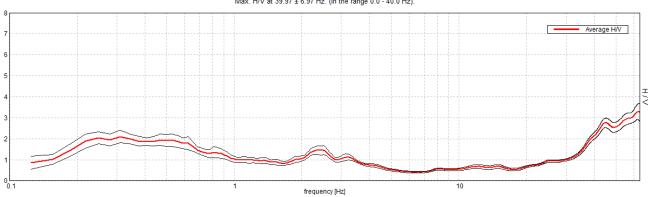
Instrument: TZ3-0001/01-13

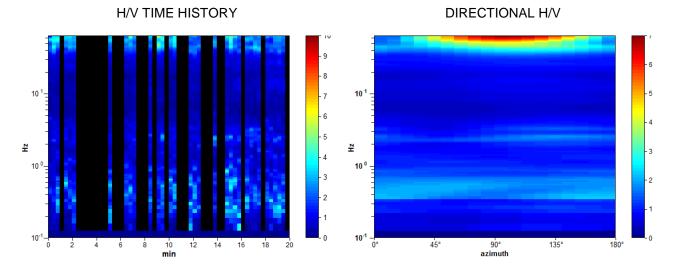
Data format: 32 byte

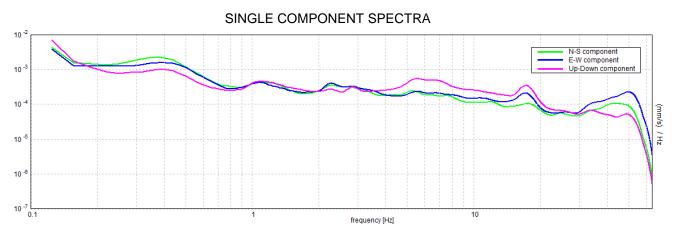
Full scale [mV]: 51
Start recording: 15/11/16 17:15:31 End recording: 15/11/16 17:35:31 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 39.97 ± 6.97 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 39.97 ± 6.97 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.97 > 0.50	OK		
$n_c(f_0) > 200$	25580.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	31.594 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO	
A ₀ > 2	2.14 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.17443 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	6.9717 < 1.99844		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.1552 < 1.58	OK		

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA, T72

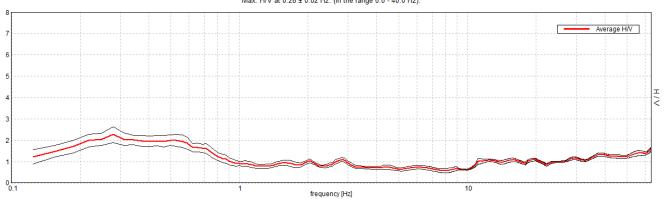
Instrument: TZ3-0001/01-13

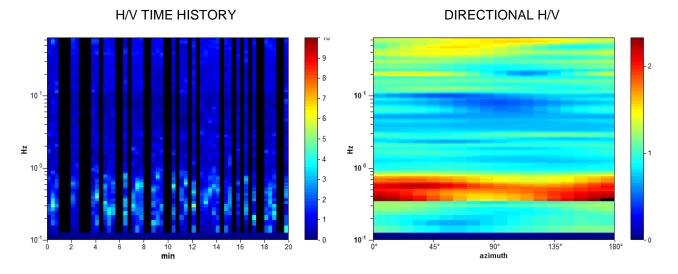
Data format: 32 byte

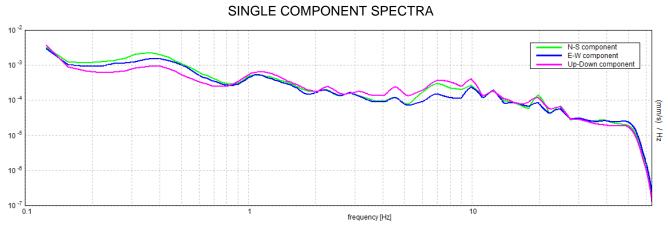
Full scale [mV]: 51 Start recording: 15/11/16 18:07:35 End recording: 15/11/16 18:27:36 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 58% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.28 ± 0.02 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 0.28 ± 0.02 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$ $0.28 > 0.50$				
$n_c(f_0) > 200$	196.9 > 200		NO	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 14 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria				
[At least	a for a clear H/V peak 5 out of 6 should be fulfilled]			
•	•	ОК		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.094 Hz			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.094 Hz 0.875 Hz	OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	0.094 Hz 0.875 Hz 2.27 > 2	OK	NO	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA EST, T 73

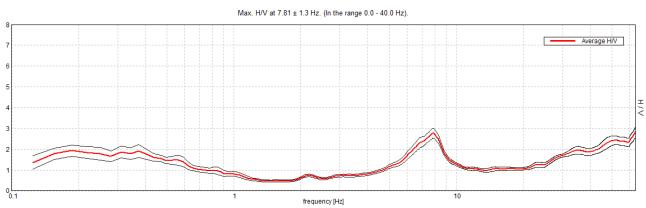
Instrument: TZ3-0001/01-13

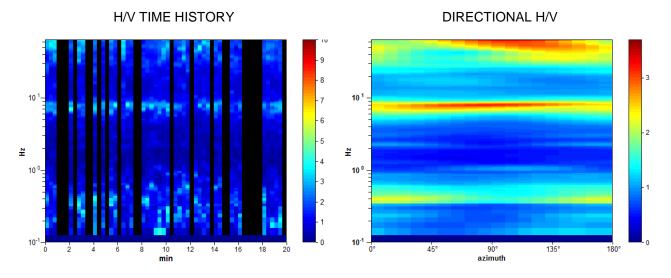
Data format: 32 byte

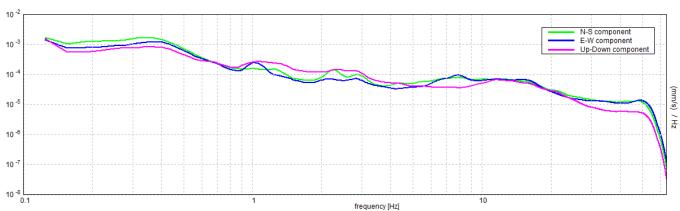
Full scale [mV]: 51
Start recording: 15/11/16 19:00:12 End recording: 15/11/16 19:20:12

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 63% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 7.81 ± 1.3 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	7.81 > 0.50	OK		
$n_c(f_0) > 200$	5937.5 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 376 times	OK		
	a for a clear H/V peak			
[At least	5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 5.594 Hz	OK		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$		OK OK		
•	5.594 Hz			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5.594 Hz 9.594 Hz	OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5.594 Hz 9.594 Hz 2.76 > 2	OK	NO NO	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA EST, T 74

Instrument: TZ3-0001/01-13

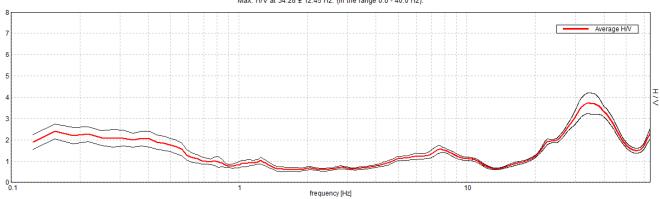
Data format: 32 byte

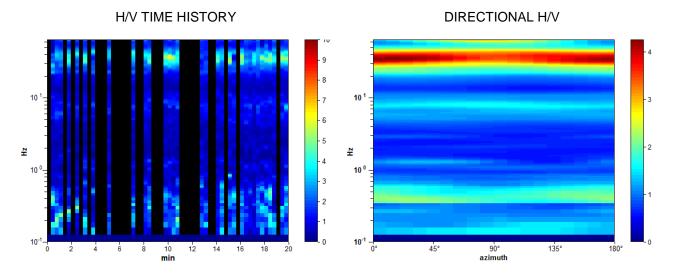
Full scale [mV]: 51
Start recording: 15/11/16 19:29:42 End recording: 15/11/16 19:49:42

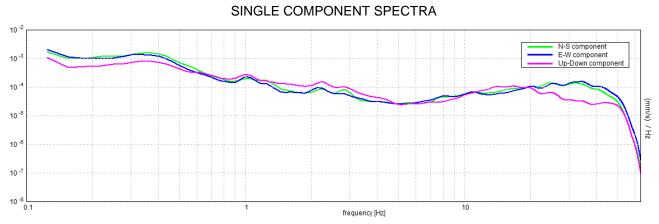
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 34.28 ± 12.45 Hz. (In the range 0.0 - 40.0 Hz).

Max. H/V at 34.28 ± 12.45 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	34.28 > 0.50	OK		
$n_c(f_0) > 200$	21940.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1500	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	22.313 Hz	OK		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	22.313 Hz 49.156 Hz	OK OK		
Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	49.156 Hz	OK	NO	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	49.156 Hz 3.72 > 2	OK	NO NO	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T75

Instrument: TZ3-0001/01-13

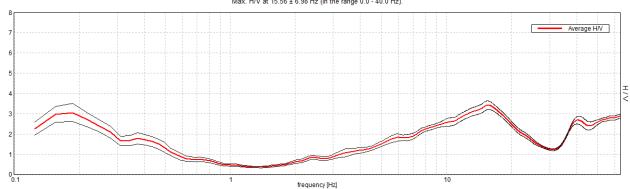
Data format: 32 byte Full scale [mV]: 51

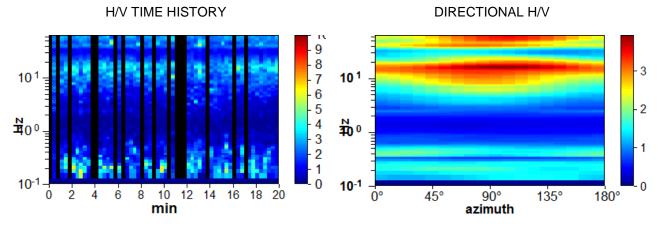
Start recording: 10/01/17 11:15:38 End recording: 10/01/17 11:35:38

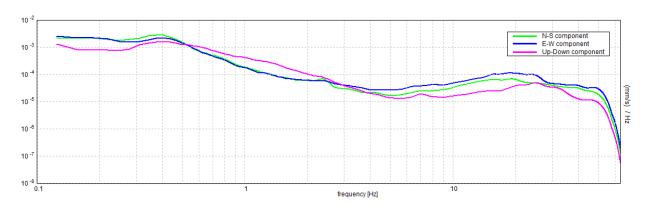
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analyzed 73% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 15.56 \pm 6.98 Hz (in the range 0.0 - 40.0 Hz).

Max. H/V at 15.56 ± 6.98 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	15.56 > 0.50	OK				
$n_{c}(f_{0}) > 200$	13695.0 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 748 times	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	5.438 Hz	OK				
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	24.781 Hz	OK				
A ₀ > 2	3.42 > 2	OK				
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.44867 < 0.05		NO			
$\sigma_{\rm f} < \epsilon(f_0)$ 6.98243 < 0.77813						
$\sigma_{A}(f_{0}) < \theta(f_{0})$ 0.2147 < 1.58 OK						

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T76

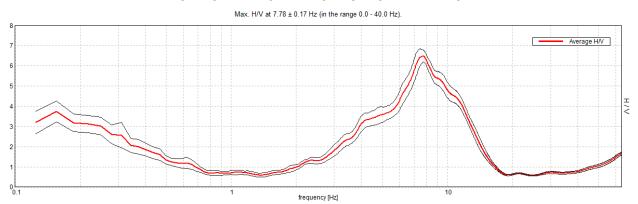
Instrument: TZ3-0001/01-13

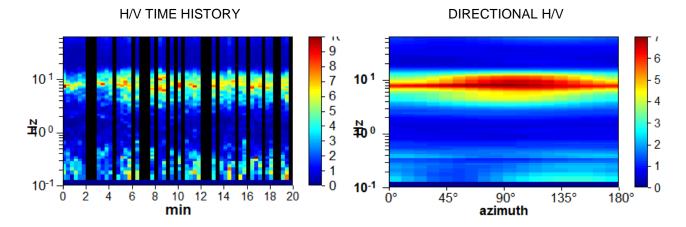
Data format: 32 byte Full scale [mV]: 51

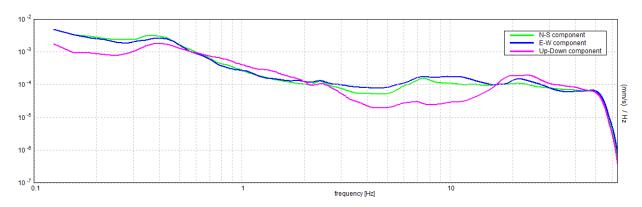
Start recording: 10/01/17 11:51:48 End recording: 10/01/17 12:11:48

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 63% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 7.78 ± 0.17 Hz (in the range 0.0 - 40.0 Hz).

[A	All 3 should be fulfilled]	
$f_0 > 10 / L_w$	7.78 > 0.50	OK
$n_c(f_0) > 200$	5913.8 > 200	OK
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 374 times	OK
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$		
Criter	ia for a clear H/V peak	
	ia for a clear H/V peak 5 out of 6 should be fulfilled]	
	•	ок
[At least	5 out of 6 should be fulfilled]	OK OK
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 4.094 Hz	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	4.094 Hz 12.656 Hz	ОК
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	4.094 Hz 12.656 Hz 6.48 > 2	OK OK

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CHIOMA, T 77

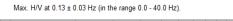
Instrument: TZ3-0001/01-13

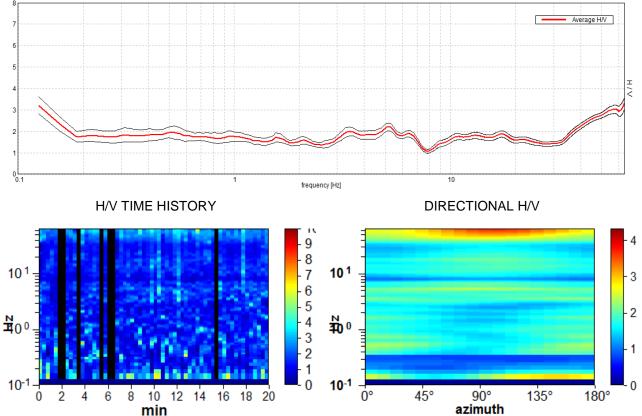
Data format: 32 byte Full scale [mV]: 51

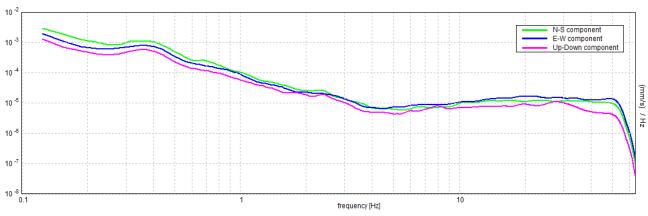
Start recording: 10/01/17 15:52:59 End recording: 10/01/17 16:12:59

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 88% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.13 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

A]	Il 3 should be fulfilled]		
f ₀ > 10 / L _w	0.13 > 0.50		NO
$n_c(f_0) > 200$	132.5 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 7 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	-	ок	
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	ОК	NO
[At least	5 out of 6 should be fulfilled]	OK OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 0.094 Hz		NO NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 0.094 Hz 3.21 > 2		

L_w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
-	standard deviation of H/V peak frequency
σ_{f}	· · · · · · · · · · · · · · · · · · ·
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_0) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(\hat{f}^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
3/(1)	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
9	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
$\Theta(f_0)$	The short value for the stability condition $O_A(1) < O(1_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	