

PROVINCIA DI LIVORNO

Studio di Microzonazione Sismica relativa al territorio comunale di Rosignano marittimo (LI) I livello di analisi

REPORTS DELLE MISURE HVSR

Geoecho snc - Dott. Geol. Andrea Marini

Collaboratori: Dott. Geol. Fausto Capacci Dott. Geol. Jenny Migliorini

PROGETTO

FEBBRAIO 2017

Studio di Microzonazione Sismica Comune di Rosignano Marittimo (LI) Geoecho snc - Geol. Andrea Marini, Geol. Fausto Capacci, Geol. Jenny Migliorini

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 14/12/15 15:10:28 End recording: 14/12/15 15:30:28 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 67% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 2.59 ± 0.62 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	2.59 > 0.50	ОК			
n _c (f ₀) > 200 2075.0 > 200 OK					
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 126 times					
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 0.656 Hz OK					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ NO					
A ₀ > 2 2.42 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.23982 < 0.05		NO		

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

0.62204 < 0.12969

0.1669 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 14/12/15 15:51:12 End recording: 14/12/15 16:11:12 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 58% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 6.59 ± 2.13 Hz (in the range 0.0 - 20.0 Hz).

NO NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 6.59 ± 2.13 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	6.59 > 0.50	ОК			
n _c (f ₀) > 200	4615.6 > 200	OK			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	14.344 Hz	OK			
A > 2 241 > 2 0K					

|0.32232| < 0.05

2.12531 < 0.32969

0.1855 < 1.58

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 16:17:21 End recording: 05/02/16 16:37:21 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 68% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 2.25 ± 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	2.25 > 0.50	OK			
n _c (f ₀) > 200	1845.0 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 109 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 0.938 Hz OK					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$			NO		
A ₀ > 2 3.21 > 2 OK					

|0.04737| < 0.05

0.10659 < 0.1125

0.3665 < 1.58

OK

OK

OK

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 15:41:07 End recording: 16/12/15 16:01:07 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 1.97 ± 0.12 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	1.97 > 0.50	ОК			
n _c (f ₀) > 200	1732.5 > 200	ОК			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 96 times	ut of 96 times OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.063 Hz	ОК			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	5.75 Hz	ОК			
A ₀ > 2	3.53 > 2	ОК			
$f_{acc}[Au_0(f) + \sigma_0(f)] = f_0 + 5\%$ $ 0.06299 < 0.05$ NO					

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

0.12402 < 0.19688

0.2883 < 1.78

OK

OK

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 16:13:38 End recording: 16/12/15 16:33:38 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 67% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

10 ¹ 10 ⁰ 10 ¹ 10 ¹ 10 ² 10 ² 10 ⁴ 10 ² 10 ⁴ 10 ² 10 ⁴ 10 ² 10 ⁴ 10 ¹ 10 ² 10 ¹ 10 ² 10 ² 10 ² 10 ⁴ 10 ⁴

Max. H/V at 20.84 ± 14.55 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	20.84 > 0.50	OK			
n _c (f ₀) > 200	16675.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1002	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		

Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO
A ₀ > 2	1.78 > 2		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.69824 < 0.05		NO
σ _f < ε(f ₀)	14.55394 < 1.04219		NO
$\sigma_A(f_0) < \theta(f_0)$	0.167 < 1.58	OK	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 14:16:12 End recording: 05/02/16 14:36:12 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 67% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 20.94 ± 0.19 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	20.94 > 0.50	OK			
n _c (f ₀) > 200	16750.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1006	OK			
$\sigma_A(f) < 3$ for 0.5 $f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2	17.438 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	25.906 Hz	OK			
A ₀ > 2	7.87 > 2	OK			

|0.00921| < 0.05

0.19289 < 1.04688

0.3595 < 1.58

OK

ΟΚ

OK

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

σ _A (f ₀)	$) < \theta(f_0)$	0.3595 < 1.58	ОК
L _w	window length		
n _w	number of windows use	d in the analysis	
$n_c = L_w n_w f_0$	number of significant cy	cles	
f	current frequency		
f ₀	H/V peak frequency		
σ _f	standard deviation of H/	V peak frequency	
ε(f ₀)	threshold value for the s	tability condition $\sigma_{f} < \epsilon(f_{0})$	
Â ₀	H/V peak amplitude at fr	requency f ₀	
A _{H/V} (f)	H/V curve amplitude at f	requency f	
f ⁻	frequency between f ₀ /4	and f_0 for which $A_{H/V}(f) < A_0/2$	
f ⁺	frequency between fo an	id $4f_0$ for which $A_{H/V}(f^+) < A_0/2$	
$\sigma_A(f)$	standard deviation of A _H	$_{\rm IV}(f)$, $\sigma_{\rm A}(f)$ is the factor by which	the mean $A_{H/V}(f)$ curve should
	be multiplied or divided	., ., .,	
σ _{logH/V} (f)	standard deviation of log	g A _{H/v} (f) curve	
$\theta(f_0)$	threshold value for the s	tability condition $\sigma_A(f) < \theta(f_0)$	

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 15:05:06 End recording: 05/02/16 15:25:07 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 83% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 17.81 ± 2.09 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	17.81 > 0.50	OK			
n _c (f ₀) > 200	17812.5 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 856 times	ОК			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	11.969 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	23.031 Hz	OK			
A ₀ > 2	3.15 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.11714 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$	2.08662 < 0.89063		NO		

0.1877 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 16:49:45 End recording: 16/12/15 17:09:45 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available 0h20'00". Trace length: Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 25.59 ± 15.37 Hz (in the range 0.0 - 64.0 Hz).

Max. H/V at 25.59 ± 15.37 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	25.59 > 0.50	OK		
n _c (f ₀) > 200	22522.5 > 200	OK		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1230	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				

Exists f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2			NO
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	1.89 > 2		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.60039 < 0.05		NO
σ _f < ε(f₀)	15.36611 < 1.27969		NO
$\sigma_A(f_0) < \theta(f_0)$	0.1306 < 1.58	OK	

Lw	window length
nw	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
fo	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency fo
A _{H/V} (f)	H/V curve amplitude at frequency f
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σlogH/∨(f)	standard deviation of log AH/V(f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for σ _{logH/V} (f ₀)	0.48	0.40	0.30	0.25	0.20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 15:40:07 End recording: 05/02/16 16:00:07 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 13.44 ± 0.08 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	13.44 > 0.50	OK		
n _c (f ₀) > 200	11825.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 646 times	OK		
σ _A (f) < 3 for 0.5f₀ < f < 2f₀ if f₀ < 0.5Hz				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in [f₀/4, f₀] A _{H/V} (f) < A₀ / 2			NO	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	17.938 Hz	OK		

		NU
17.938 Hz	OK	
3.50 > 2	OK	
0.00611 < 0.05	OK	
0.08214 < 0.67188	OK	
0.2458 < 1.58	OK	
	17.938 Hz 3.50 > 2 0.00611 < 0.05 0.08214 < 0.67188 0.2458 < 1.58	17.938 Hz OK 3.50 > 2 OK 0.00611 < 0.05

Lw	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
fo	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency fo
A _{H/V} (f)	H/V curve amplitude at frequency f
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/ν} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T 10

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 14:19:16 End recording: 16/12/15 14:39:16 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 19.97 ± 1.87 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	19.97 > 0.50	OK		
n _c (f ₀) > 200	15575.6 > 200	OK		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 960 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6.219 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO	
A ₀ > 2	2.28 > 2	OK		
$f_{\text{post}}[A_{\text{H}/\text{V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.0935 < 0.05		NO	

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

1.86703 < 0.99844

0.2553 < 1.58

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T 11

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 13:34:19 End recording: 16/12/15 13:54:19 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 53% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.84 ± 0.35 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	4.84 > 0.50	OK			
n _c (f ₀) > 200	3100.0 > 200	OK			
$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$	Exceeded 0 out of 234 times	ОК			
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.469 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	7.688 Hz	OK			
A ₀ > 2	2.94 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.07158 < 0.05		NO		
σ _f < ε(f ₀)	0.34671 < 0.24219		NO		

 $\sigma_{f} \leq \epsilon(f_{0})$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.3389 < 1.58

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T 12

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 12:53:38 End recording: 16/12/15 13:13:38 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 77% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 5.31 ± 0.09 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	5.31 > 0.50	OK			
n _c (f ₀) > 200	4887.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 256 times	OK			
$\sigma_A(f) < 3$ for 0.5 $f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.75 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	9.813 Hz	ОК			
A ₀ > 2	3.49 > 2	ОК			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{A}(f)] = f_{0} \pm 5\%$ 0.01735 < 0.05 OK				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.09215 < 0.26563

0.2453 < 1.58

ΟΚ

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

(mm/s) / Hz

10

frequency [Hz]

GABBRO, T 13

10 -

10 ⁻²

10 ⁻³

10 ⁻⁴ L_____ 0.1

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/12/15 12:18:55 End recording: 16/12/15 12:38:55 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 55% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 8.25 ± 0.7 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	8.25 > 0.50	OK		
n _c (f ₀) > 200	5445.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 397 times	ОК		
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 2.094 Hz OK				
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	15.938 Hz	ОК		
A ₀ > 2	2.47 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.08449 < 0.05		NO	
$\sigma_{f} < \epsilon(f_{0})$	0.69703 < 0.4125		NO	

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.2608 < 1.58

OK

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 14

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/03/16 18:20:11 End recording: 02/03/16 18:40:11 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 55% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 0.69 ± 0.26 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.69 > 0.50	ОК			
n _c (f ₀) > 200	453.8 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 34 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$			NO		
A ₀ > 2	2.02 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.37525 < 0.05 NO				

σ_f < ε(f₀)

 $\sigma_A(f_0) < \theta(f_0)$

0.25798 < 0.10313

0.2643 < 2.0

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 15 Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/11/16 12:24:38 End recording: 02/11/16 12:44:39 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analysis performed on the entire trace. Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.13 ± 0.23 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.13 > 0.50		NO	
n _c (f ₀) > 200	150.0 > 200		NO	
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 7 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO	
A ₀ > 2	2.29 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.84023 < 0.05		NO	
$\sigma_{f} < \varepsilon(f_{0})$	0.23003 < 0.03125		NO	

0.3591 < 3.0

OK

r	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 16

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 12:20:02 End recording: 13/01/16 12:40:02 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 75% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 9.06 ± 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	9.06 > 0.50	OK			
n _c (f ₀) > 200	8156.3 > 200 OK				
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 436 times	ies OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.719 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	15.0 Hz	OK			
A ₀ > 2	3.12 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.01229 < 0.05 OK					

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

0.11141 < 0.45313

0.2358 < 1.58

ΟΚ

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 17

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 13:07:43 End recording: 13/01/16 13:27:43 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 1.44 ± 0.38 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	1.44 > 0.50	OK		
n _c (f ₀) > 200	1121.3 > 200	OK		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 70 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in [f₀/4, f₀] A _{H/V} (f) < A₀ / 2			NO	
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$			NO	
A ₀ > 2	1.91 > 2		NO	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.26237 < 0.05		NO	

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

0.37716 < 0.14375

0.2062 < 1.78

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 18

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 14:14:13 End recording: 13/01/16 14:34:13 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 38% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.06 ± 2.48 Hz (in the range 1.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	4.06 > 0.50	OK			
n _c (f ₀) > 200	1868.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 196 times OK					
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	$\sigma_{A}(f) < 3$ for $0.5f_{0} < f < 2f_{0}$ if $f_{0} < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 1.094 Hz OK					
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ NO					
A ₀ > 2 2.04 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.61139 < 0.05		NO		

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

2.48376 < 0.20313

0.3421 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 19

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 19:37:19 End recording: 13/01/16 19:57:19 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 68% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 12%

NO NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.81 ± 1.39 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	4.81 > 0.50	OK			
n _c (f ₀) > 200	3946.3 > 200	OK			
$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ Exceeded 0 out of 232 times OK $\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$ NO					
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ NO					
A ₀ > 2 2.23 > 2 OK					

|0.28976| < 0.05

1.39446 < 0.24063

0.1347 < 1.58

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 20

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/02/16 17:11:11 End recording: 02/02/16 17:31:11 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 68% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 61.88 ± 3.25 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	61.88 > 0.50	OK			
n _c (f ₀) > 200	50737.5 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1059	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 34.844 Hz OK					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$			NO		
A ₀ > 2 3.24 > 2 OK					

|0.0526| < 0.05

3.25477 < 3.09375

0.105 < 1.58

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 21

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/02/16 17:48:23 End recording: 02/02/16 18:08:24 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 5.31 ± 1.62 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	5.31 > 0.50	ОК			
n _c (f ₀) > 200	4143.8 > 200	OK			
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 256 times	ОК			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ NO					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	8.156 Hz	OK			
A ₀ > 2 2.80 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.30402 < 0.05		NO		

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

1.61512 < 0.26563

0.1611 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 22

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/02/16 19:20:19 End recording: 02/02/16 19:40:19 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.75 ± 0.83 Hz. (In the range 0.0 - 20.0 Hz).

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.75 ± 0.83 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.75 > 0.50	OK			
n _c (f ₀) > 200	660.0 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 37 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ NO					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ NO					
$A_0 > 2$	1.97 > 2		NO		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.10724 < 0.05		NO		

0.83043 < 0.1125 0.235 < 2.0

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 23

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/02/16 18:35:36 End recording: 02/02/16 18:55:37 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 75% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 11%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 19.59 ± 0.63 Hz (in the range 0.0 - 25.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	19.59 > 0.50	OK		
n _c (f ₀) > 200	17634.4 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 942 times	ОК		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	14.219 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ 27.625 Hz OK				
A ₀ > 2	2.96 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.03215 < 0.05	OK		
$\sigma_{\rm f} < \epsilon(f_0)$ 0.62995 < 0.97969 OK				

 $\sigma_{\rm f} < \epsilon(f_0)$ $\sigma_A(f_0) < \theta(f_0)$

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.2674 < 1.58

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 24

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 18:45:03 End recording: 13/01/16 19:05:03 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available 0h20'00". Trace length: Analyzed 57% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.56 ± 0.06 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.56 > 0.50	OK			
n _c (f ₀) > 200	382.5 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 28 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 0.125 Hz OK				
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ 0.938 Hz					
A ₀ > 2 2.56 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.09901 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$ 0.0557 < 0.08438 OK					

0.4264 < 2.0

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 25

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 12:55:18 End recording: 16/03/16 13:15:18 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 50% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 5.28 ± 0.03 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	5.28 > 0.50	OK			
n _c (f ₀) > 200	3168.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 254 times	OK			
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 4.219 Hz OK					
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ 6.5 Hz OK					
A ₀ > 2 5.83 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.00582 < 0.05 OK				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.03072 < 0.26406

0.3588 < 1.58

OK

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH//}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 26

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 18:01:19 End recording: 16/03/16 18:21:19 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 50% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 12%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 18.19 ± 7.32 Hz. (In the range 0.0 - 20.0 Hz).

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 18.19 ± 7.32 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	18.19 > 0.50	ОК			
n _c (f ₀) > 200	10912.5 > 200	ОК			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 874 times 0					
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 7.719 Hz OK					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ NO					
A ₀ > 2	2.26 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.40261 < 0.05		NO		

σ_f < ε(f₀)

 $\sigma_A(f_0) < \theta(f_0)$

7.32255 < 0.90938

0.1233 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 27

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 12:20:09 End recording: 16/03/16 12:40:09 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 70% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 12.81 ± 0.11 Hz (in the range 0.0 - 64.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]					
$f_0 > 10 / L_w$	12.81 > 0.50	OK				
n _c (f ₀) > 200	10762.5 > 200	OK				
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 616 times	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	9.219 Hz	OK				
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	25.281 Hz	OK				
$A_0 > 2$	3.07 > 2	OK				
$f_{\text{neak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.00895 < 0.05 OK						

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

0.11472 < 0.64063

0.1732 < 1.58

OK

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 28

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 13:29:10 End recording: 16/03/16 13:49:10 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 47% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.53 ± 0.31 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	0.53 > 0.50	OK				
n _c (f ₀) > 200	297.5 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 26 times OK					
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.969 Hz	OK				
A ₀ > 2	2.73 > 2	OK				
$f_{mark}[A_{\mu\nu}(f) \pm \sigma_{\lambda}(f)] = f_{0} \pm 5\%$	0.58645 < 0.05		NO			

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

0.31155 < 0.07969

0.4371 < 2.0

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO M_MO, T 29

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 17:47:36 End recording: 05/02/16 18:07:36 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 54% trace (manual window selection) Sampling rate: 128 Hz Window size: 25 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.0 \pm 0.26 Hz. (In the range 0.0 - 20.0 Hz).

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 1.0 ± 0.26 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	1.00 > 0.40	OK			
n _c (f ₀) > 200	650.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ NO					
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.5 Hz	OK			
A ₀ > 2	1.84 > 2		NO		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.2603 < 0.05 NO				

 $\sigma_{f} \leq \epsilon(f_{0})$

 $\sigma_A(f_0) < \theta(f_0)$

0.2603 < 0.1

0.1962 < 1.78

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO M_MO, T 30

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 18:25:06 End recording: 05/02/16 18:45:06 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 72% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 12.5 ± 1.27 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	12.50 > 0.50	ОК			
n _c (f ₀) > 200	10750.0 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 601 times	ОК			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ NO					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	16.688 Hz	OK			
A ₀ > 2	2.67 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{A}(f)] = f_{0} \pm 5\%$ 0.10182 < 0.05 NO				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

1.27273 < 0.625

0.155 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M_MO, T 31

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 05/02/16 19:08:19 End recording: 05/02/16 19:28:19 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 8.03 ± 0.12 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	8.03 > 0.50	OK			
$n_c(f_0) > 200$ 6264.4 > 200 OK					
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 386 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 2.188 Hz OK					
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ 13.594 Hz OK					
A ₀ > 2 2.13 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01468 < 0.05	OK			

0.11789 < 0.40156

0.2077 < 1.58

ΟΚ

OK

σ_f < ε(f₀)

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO M_MO, T 32

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 15:27:24 End recording: 16/03/16 15:47:24 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 62% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 8.69 ± 1.57 Hz (in the range 0.0 - 30.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	8.69 > 0.50	ОК			
n _c (f ₀) > 200	6428.8 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 418 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.063 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	12.406 Hz	OK			
A ₀ > 2	3.76 > 2	OK			
$f_{max}[A_{WW}(f) \pm \sigma_{A}(f)] = f_{0} \pm 5\%$ 0.1802 < 0.05					

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

1.56545 < 0.43438

0.334 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO M_MO, T 33

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 16/03/16 17:12:03 End recording: 16/03/16 17:32:04 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 3.66 ± 0.43 Hz. (In the range 0.0 - 30.0 Hz).

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 3.66 ± 0.43 Hz (in the range 0.0 - 30.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	3.66 > 0.50	ОК			
$n_c(f_0) > 200$ 3217.5 > 200 OK					
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 176 times	ОК			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.531 Hz	ОК			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ 7.906 Hz OK					
A ₀ > 2	4.45 > 2	OK			
$f_{\text{max}}[A_{\text{HV}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.11668 < 0.05 NO					

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

0.42661 < 0.18281

0.3358 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO SOLVAY, T 34

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 03/12/15 15:08:50 End recording: 03/12/15 15:35:55 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h27'00". Analyzed 77% trace (manual window selection) Sampling rate: 128 Hz Window size: 25 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.31 \pm 0.32 Hz. (In the range 0.0 - 20.0 Hz).

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.31 ± 0.32 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.31 > 0.40		NO	
n _c (f ₀) > 200	382.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 16 times	ОК		
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2	0.156 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.938 Hz	OK		
A ₀ > 2	2.06 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.03874 < 0.05		NO	
$\sigma_{\rm f} < \epsilon({\rm f_0})$	0.32461 < 0.0625		NO	

0.2528 < 2.5

OK

r	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_0) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 35

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 13/01/16 17:59:58 End recording: 13/01/16 18:19:58 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 62% trace (manual window selection) Sampling rate: 128 Hz Window size: 25 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.41 ± 0.04 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.41 > 0.40	OK		
n _c (f ₀) > 200	304.7 > 200 OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 20 times	ОК		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	ОК		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.688 Hz	OK		
A ₀ > 2	2.75 > 2 OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.10969 < 0.05		NO	
$\sigma_{\rm f} < \epsilon(f_0)$	0.04456 < 0.08125	OK		

0.285 < 2.5

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) \leq \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 36

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 24/03/16 13:36:43 End recording: 24/03/16 14:00:43 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h24'00". Analyzed 81% trace (manual window selection) Sampling rate: 128 Hz Window size: 30 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.31 ± 0.02 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	0.31 > 0.33		NO
n _c (f ₀) > 200	365.6 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 16 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.156 Hz	OK	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.594 Hz	OK	
A ₀ > 2	3.53 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.05311 < 0.05		NO
$\sigma_{f} < \overline{\epsilon(f_{0})}$	0.0166 < 0.0625	OK	

0.5099 < 2.5

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

MAZZANTA, T 37

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 27/04/16 15:38:56 End recording: 27/04/16 15:58:56 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 52% trace (manual window selection) Sampling rate: 128 Hz Window size: 25 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.06 ± 1.16 Hz (in the range 0.0 - 25.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	4.06 > 0.40	OK	
n _c (f ₀) > 200	2539.1 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 196 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.969 Hz	OK	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	6.375 Hz	OK	
A ₀ > 2	4.53 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.28615 < 0.05		NO

1.16247 < 0.20313 0.4449 < 1.58

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

MAZZANTA, T 38

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 27/04/16 16:09:36 End recording: 27/04/16 16:29:36 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 42% trace (manual window selection) Sampling rate: 128 Hz Window size: 30 s Smoothing type: Triangular window Smoothing: 10%

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.0 ± 0.02 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	4.00 > 0.33	OK	
n _c (f ₀) > 200	2040.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 193 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.219 Hz	OK	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	6.688 Hz	OK	
A ₀ > 2	6.06 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.00599 < 0.05	OK	

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.02397 < 0.2

1.255 < 1.58

ΟΚ

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 39

Strumento: TRE-0005/00-06 Inizio registrazione: 27/03/13 16:06:51 Fine registrazione: 27/03/13 16:26:52 Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN Dato GPS non disponibile Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia. Freq. campionamento: 128 Hz Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Picco H/V a 19.06 ± 7.93 Hz (nell'intervallo 0.0 - 35.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 19.06 ± 7.93 Hz (nell'intervallo 0.0 - 35.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]			
$f_0 > 10 / L_w$	19.06 > 0.50	OK	
n _c (f ₀) > 200	22875.0 > 200	OK	
σ _A (f) < 2 per 0.5f ₀ < f < 2f ₀ se f ₀ > 0.5Hz	Superato 0 volte su 916	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]			
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO

Esiste f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2			NO
Esiste f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	26.719 Hz	OK	
A ₀ > 2	2.29 > 2	OK	
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.41585 < 0.05		NO
σ _f < ε(f ₀)	7.92719 < 0.95313		NO
$\sigma_A(f_0) < \theta(f_0)$	0.5847 < 1.58	OK	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σ _f	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_{f} < \varepsilon(f_{0})$
A ₀	ampiezza della curva H/V alla frequenza f ₀
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f
f ⁻¹	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f_0^-) < A_0/2$
f ⁺	frequenza tra f_0 e 4 f_0 alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$						
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ per $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 40

10 1

₩ 10⁰

10-1

2

0

6

4

Strumento: TRE-0005/00-06 Inizio registrazione: 12/03/13 14:38:54 Fine registrazione: 12/03/13 14:58:55 Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 95% tracciato (selezione manuale) Freq. campionamento: 128 Hz Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window Lisciamento: 10%

min

8 10 12 14 16 18 20

DIREZIONALITA' H/V

H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
1.50	1.50	276	0.42
inf.	inf.	538	0.42

Vs(0.0-30.0)=514m/s

Vs [m/s]

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 45.81 ± 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

Criteri per [Tutti 3 dov	una curva H/V affidabile vrebbero risultare soddisfatti]					
$f_0 > 10 / L_w$	45.81 > 0.50	ОК				
$n_{c}(f_{0}) > 200$	249.4 > 200	ОК				
σ _A (f) < 2 per 0.5f ₀ < f < 2f ₀ se f ₀ > 0.5Hz	Superato 0 volte su 12	OK				
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$						
Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]						
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	ОК				
Esiste f [*] in [f ₀ , 4f ₀] A _{H/V} (f [*]) < A ₀ / 2	0.75 Hz	ОК				
A ₀ > 2	1.74 > 2		NO			
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.07177 < 0.05		NO			
$\sigma_{\rm f} < \epsilon(f_0)$	0.0157 < 0.04375	OK				

0.4462 < 2.5

OK

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σ _f	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A ₀	ampiezza della curva H/V alla frequenza f ₀
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequenza tra $f_0 = 4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
σ _A (f)	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
σ _{logH/V} (f)	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$						
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ per $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 41

Strumento: TRE-0005/00-06 Inizio registrazione: 12/03/13 14:12:03 Fine registrazione: 12/03/13 14:32:04 Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 92% tracciato (selezione manuale) Freq. campionamento: 128 Hz Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window Lisciamento: 10%

H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
2.20	2.20	307	1.9
inf.	inf.	602	2.0

Vs(0.0-30.0)=562 m/s

Vs [m/s]

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 34.66 ± 3.99 Hz (nell'intervallo 0.0 - 35.0 Hz).

Criteri per [Tutti 3 dov	una curva H/V affidabile vrebbero risultare soddisfatti]					
$f_0 > 10 / L_w$	34.66 > 0.50	ОК				
n _c (f ₀) > 200	38121.9 > 200	ОК				
σ _A (f) < 2 per 0.5f ₀ < f < 2f ₀ se f ₀ > 0.5Hz	Superato 0 volte su 1494	ОК				
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$						
Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]						
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	26.813 Hz	OK				
Esiste f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	42.375 Hz	ОК				
A ₀ > 2	2.13 > 2	ОК				
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.05688 < 0.05		NO			
$\sigma_{f} < \varepsilon(f_{0})$	1.97108 < 1.73281		NO			

0.2627 < 1.58

OK

	-
L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_{f} < \epsilon(f_{0})$
A ₀	ampiezza della curva H/V alla frequenza f ₀
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f
f	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f) < A_0/2$
f ⁺	frequenza tra f_0 e 4 f_0 alla quale $A_{H/V}(f^+) < A_0/2$
σ _A (f)	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{loaH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$						
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ per $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO SOLVAY LOC. COTONE T42

Instrument: TZ3-0001/01-13 Start recording: 21/05/13 10:08:42 End recording: 21/05/13 10:28:42 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 72% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 15%

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 7.5 ± 2.32 Hz (in the range 0.0 - 35.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	7.50 > 0.50	OK				
n _c (f ₀) > 200	6450.0 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 361 times	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
Criteria [At least	a for a clear H/V peak 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.063 Hz	OK				
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	27.25 Hz	OK				
A ₀ > 2	2.35 > 2	OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.3098 < 0.05		NO			
$\sigma_{\rm f} < \varepsilon({\rm f_0})$	2.3235 < 0.375		NO			
$\sigma_A(f_0) < \Theta(f_0)$	0.3673 < 1.58	OK				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f _o	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_{\rm f} < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f_0
A _{HM} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/\/} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO SOLVAY LOC. COTONE T43

Instrument: TZ3-0001/01-13 Start recording: 21/05/13 09:36:54 End recording: 21/05/13 09:56:54 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 83% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

SINGLE COMPONENT SPECTRA

NO NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 37.5 ± 15.58 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	37.50 > 0.50	OK		
n _c (f ₀) > 200	37500.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 1449 times	ОК		
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in [f₀/4, f₀] A _{H/V} (f) < A₀ / 2	19.156 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	58.75 Hz	OK		
$A_0 > 2$	2.42 > 2	OK		

|0.41546| < 0.05

15.57992 < 1.875

0.6466 < 1.58

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

σ_f < ε(f₀)

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO M.mo, T44

Strumento: TZ3-0001/01-13 Inizio registrazione: 18/08/14 11:24:04 Fine registrazione: 18/08/14 11:44:04 Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN Dato GPS non disponibile Durata registrazione: 0h20'00". Analizzato 67% tracciato (selezione manuale) Freq. campionamento: 128 Hz Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window Lisciamento: 15%

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di Grilla prima di interpretare la tabella seguente].

Picco H/V a 7.28 ± 0.29 Hz (nell'intervallo 0.0 - 64.0 Hz).

Criteri per una curva H/V affidabile

[Tutti 3 dovrebbero risultare soddisfatti]

$f_0 > 10 / L_w$	7.28 > 0.50	OK	
n _c (f ₀) > 200	5825.0 > 200	OK	
σ _A (f) < 2 per 0.5f ₀ < f < 2f ₀ se f ₀ > 0.5Hz	Superato 0 volte su 350	ОК	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			

Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]

Esiste f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2	2.313 Hz	OK	
Esiste f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	9.781 Hz	OK	
A ₀ > 2	2.42 > 2	OK	
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.03922 < 0.05	OK	
σ _f < ε(f ₀)	0.28556 < 0.36406	OK	
$\sigma_A(f_0) < \theta(f_0)$	0.6425 < 1.58	OK	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_{f} < \epsilon(f_{0})$
A ₀	ampiezza della curva H/V alla frequenza f ₀
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f) < A_0/2$
f ⁺	frequenza tra f_0 e 4 f_0 alla quale $A_{H/V}(f^+) < A_0/2$
σ _A (f)	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$					
Intervallo di freq. [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0) \text{ per } \sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ per $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELNUOVO MIS. T45

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 21/05/13 11:36:52 End recording: 21/05/13 11:56:52 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 62% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 1.88 ± 0.71 Hz (in the range 0.0 - 15.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]		
$f_0 > 10 / L_w$	1.88 > 0.50	ОК	
n _c (f ₀) > 200	1387.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 91 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.938 Hz	ОК	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	2.70 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.37809 < 0.05		NO

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.70891 < 0.1875

0.3499 < 1.78

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

GABBRO, T46

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 30/09/16 20:11:50 End recording: 30/09/16 20:31:50 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 78% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10% HORIZONTAL TO VERTICAL SPECTRAL RATIO Max. H/V at 0.25 ± 0.07 Hz. (In the range 0.0 - 40.0 Hz). 8 7 Average H/V 6 5 Ι 4 \geq 3 2 1 0_L 0.1 1 10 frequency [Hz] **DIRECTIONAL H/V H/V TIME HISTORY** 9 8 10 10¹ 6 5 1 ₩00 4 **₩**00 3 2 1 0 10-1 10⁻¹ 0 12 14 16 18 20 45° Ż 8 10 ٥° 90° 135° 0 4 6 180° min azimuth

SINGLE COMPONENT SPECTRA

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 0.25 ± 0.07 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
f ₀ > 10 / L _w	0.25 > 0.50		NO	
nc(f₀) > 200	235.0 > 200	ОК		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 13 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f ⁻ in [f₀/4, f₀] A _{H/V} (f ⁻) < A₀ / 2	0.094 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO	
A ₀ > 2	1.76 > 2		NO	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.29681 < 0.05		NO	

 $\frac{\sigma_{f} < \varepsilon(f_{0})}{\sigma_{A}(f_{0}) < \theta(f_{0})}$

0.0742 < 0.05

0.2346 < 2.5

Lw	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
fo	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

0

180°

GABBRO, T47

10

2 4 6 8

0

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 30/09/16 19:18:50 End recording: 30/09/16 19:38:50 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 70% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

0

10 12 14 16 18 20

min

10⁻¹

0°

45°

90°

azimuth

135°

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.13 ± 7.6 Hz (in the range 0.0 - 40.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]		
f ₀ > 10 / L _w	0.13 > 0.50		NO
n _c (f ₀) > 200	105.0 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 7 times	ОК	
Criteria [At least 5	for a clear H/V peak out of 6 should be fulfilled]		
Exists f ⁻ in [f₀/4, f₀] Ан/ν(f ⁻) < А₀ / 2	0.094 Hz	ОК	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	1.88 > 2		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	60.83308 < 0.05		NO
$\sigma_{\rm f} < \epsilon(f_0)$	7.60414 < 0.03125		NO

 $\sigma_A(f_0) < \theta(f_0)$

Lw	window length
nw	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
fo	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σlogH/∨(f)	standard deviation of log AH/V(f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.2666 < 3.0

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 48 Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 04/10/16 14:50:29 End recording: 04/10/16 15:10:29 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 83% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.16 ± 0.01 Hz (in the range 0.0 - 40.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]			
$f_0 > 10 / L_w$	0.16 > 0.50		NO	
n _c (f ₀) > 200	156.3 > 200		NO	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 8 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.281 Hz	OK		
A ₀ > 2	7.59 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.05657 < 0.05		NO	
$\sigma_{f} < \epsilon(f_{0})$	0.00884 < 0.03906	OK		

1.5968 < 3.0

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 49

¥

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/11/16 16:08:46 End recording: 02/11/16 16:28:46 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 25% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

TROMINO[®] *Grilla* www.tromino.eu [According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 3.13 ± 7.63 Hz (in the range 0.0 - 40.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]		
$f_0 > 10 / L_w$	3.13 > 0.50	OK	
n _c (f ₀) > 200	937.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 151 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
Criteria [At least 5	a for a clear H/V peak		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.563 Hz	OK	
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	6.125 Hz	OK	
A ₀ > 2	4.02 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	2.44067 < 0.05		NO
$\sigma_{\rm f} < \epsilon(f_0)$	7.62709 < 0.15625		NO
$\sigma_A(f_0) < \theta(f_0)$	0.5445 < 1.58	OK	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 50

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/11/16 15:17:56 End recording: 02/11/16 15:37:56 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 63% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.47 ± 3.29 Hz. (In the range 0.0 - 40.0 Hz).

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 1.47 ± 3.29 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	1.47 > 0.50	OK		
n _c (f ₀) > 200	1116.3 > 200	ОК		
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 72 times	OK		
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz				
Criteria [At least 5	for a clear H/V peak			
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$			NO	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO	
A ₀ > 2	2.35 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	2.24203 < 0.05		NO	
$\sigma_{f} < \overline{\epsilon(f_{0})}$	3.29299 < 0.14688		NO	
$\sigma_A(f_0) < \theta(f_0)$	0.255 < 1.78	ΟΚ		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

NIBBIAIA, T 51

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 02/11/16 13:14:31 End recording: 02/11/16 13:34:31 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 72% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

TROMINO[®] *Grilla* www.tromino.eu [According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 22.19 ± 6.1 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	22.19 > 0.50	OK			
n _c (f ₀) > 200	19081.3 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1066	OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO		
A ₀ > 2	2.27 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.2751 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$	6.10374 < 1.10938		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.143 < 1.58	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 52

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.13 ± 9.82 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.13 > 0.50		NO		
n _c (f ₀) > 200	82.5 > 200		NO		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 7 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO		
A ₀ > 2	2.45 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	78.5347 < 0.05		NO		
$\sigma_{f} < \epsilon(f_{0})$	9.81684 < 0.03125		NO		

0.3786 < 3.0

OK

r	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T53

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 7.41 ± 10.99 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	7.41 > 0.50	OK	
n _c (f ₀) > 200	5332.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 356 times	ОК	
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	19.969 Hz	ΟΚ	
A ₀ > 2	2.16 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.48376 < 0.05		NO
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	10.98912 < 0.37031		NO

 $\sigma_{\rm f} < \epsilon(f_0)$ $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.1213 < 1.58

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 54

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 17:54:52 End recording: 07/11/16 18:14:52 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 72% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 1.75 ± 0.24 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	1.75 > 0.50	ОК	
n _c (f ₀) > 200	1505.0 > 200	ОК	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 85 times	ОК	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	3.875 Hz	ОК	
$A_0 > 2$	2.59 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.13944 < 0.05		NO
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.24402 < 0.175		NO

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f_{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.2251 < 1.78

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTIGLIONCELLO, T 55

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 19:03:51 End recording: 07/11/16 19:23:51 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

Max. H/V at 2.25 ± 0.46 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	2.25 > 0.50	ОК	
n _c (f ₀) > 200	1755.0 > 200	ОК	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 109 times	ОК	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.969 Hz	OK	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	2.594 Hz	ОК	
A ₀ > 2	2.78 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.20631 < 0.05		NO
$\sigma_{f} < \epsilon(f_{0})$	0.46419 < 0.1125		NO

0.2178 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

5

2

180°

CHIOMA, T 56

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 13:43:36 End recording: 07/11/16 14:03:36 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

90

azimuth

135

Max. H/V at 39.97 ± 18.66 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	39.97 > 0.50	OK	
n _c (f ₀) > 200	31175.6 > 200	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 1410	ОК	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times		
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f ⁻ in [f ₀ /4, f ₀] A _{H/V} (f ⁻) < A ₀ / 2			NO
Evide f^+ in $ff_{-} ff_{-} ff_{-}$			NO

EXISTS T IN $[T_0/4, T_0] A_{H/V}(T) < A_0 / 2$			NU
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	2.62 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.46677 < 0.05		NO
σ _f < ε(f ₀)	18.65631 < 1.99844		NO
$\sigma_A(f_0) < \theta(f_0)$	0.1422 < 1.58	OK	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

2

180°

135

CHIOMA, T 57

Ħ

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 12:52:08 End recording: 07/11/16 13:12:08 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 37% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.16 ± 0.27 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.16 > 0.50		NO		
n _c (f ₀) > 200	68.8 > 200		NO		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 8 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO		
A ₀ > 2	2.37 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	1.75136 < 0.05		NO		
$\sigma_{f} < \epsilon(f_{0})$	0.27365 < 0.03906		NO		

r	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.4661 < 3.0

OK

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CHIOMA, T 58

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 14:20:01 End recording: 07/11/16 14:40:01 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 73% trace (manual window selection)

Trace length: 0h20'00". Analyzed 73% trace (ma Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.16 ± 0.0 Hz (in the range 0.0 - 40.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.16 > 0.50		NO		
n _c (f ₀) > 200	137.5 > 200		NO		
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 8 times	OK			
$\sigma_A(f) < 3$ for 0.5 $f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	0.406 Hz	OK			
A ₀ > 2	2.47 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.0 < 0.05	OK			
$\sigma_{\rm f} < \epsilon(f_0)$	0.0 < 0.03906	OK			

0.3067 < 3.0

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

CHIOMA, T 59

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 14:56:29 End recording: 07/11/16 15:16:29 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 87% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 39.97 ± 17.44 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	39.97 > 0.50	OK			
n _c (f ₀) > 200	41567.5 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in [f ₀ /4, f ₀] A _{H/V} (f) < A ₀ / 2	30.938 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$			NO		
A ₀ > 2	2.25 > 2	OK			

|0.43642| < 0.05

17.44306 < 1.99844

0.134 < 1.58

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

$\sigma_A(f_0) < \Theta(f_0)$		0.134 < 1.58	OK	
L _w	window length			
n _w	number of windows use	d in the analysis		
$n_c = L_w n_w f_0$	number of significant cy	cles		
f	current frequency			
f ₀	H/V peak frequency			
$\sigma_{\rm f}$	standard deviation of H/	V peak frequency		
ε(f ₀)	threshold value for the s	stability condition $\sigma_{f} < \varepsilon(f_{0})$		
A ₀	H/V peak amplitude at f	requency f ₀		
A _{H/V} (f)	H/V curve amplitude at	frequency f		
f	frequency between f ₀ /4	and f_0 for which $A_{H/V}(f^{-}) < A_0/2$		
f ⁺	frequency between fo ar	nd $4f_0$ for which $A_{H/V}(f^+) < A_0/2$		
$\sigma_A(f)$	standard deviation of A _t	$_{HV}(f)$, $\sigma_A(f)$ is the factor by which	n the mean A _{H/V} (f) cu	rve should
	be multiplied or divided			
σ _{loaH/V} (f)	standard deviation of log	g A _{H/v} (f) curve		
$\theta(f_0)$	threshold value for the s	stability condition $\sigma_A(f) < \theta(f_0)$		

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

3

CHIOMA, T 60

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 07/11/16 11:50:12 End recording: 07/11/16 12:10:12 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 45% trace (manual window selection)

Trace length: 0h20'00". Analyzed 45% Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 38.13 ± 10.3 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	38.13 > 0.50	ОК			
n _c (f ₀) > 200	20587.5 > 200	ОК			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1439	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$	29.156 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	54.0 Hz	OK			
A ₀ > 2	3.74 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.27026 < 0.05		NO		

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) \leq \theta(\mathsf{f}_0)$

10.30373 < 1.90625

0.2356 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T61

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 30/09/16 17:36:48 End recording: 30/09/16 17:56:48 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 80% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

Max. H/V at 39.97 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
f ₀ > 10 / L _w	39.97 > 0.50	OK				
n _c (f ₀) > 200	38370.0 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK				
$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$ times						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$	31.781 Hz	OK				
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ NO						

E_{XISISI} III $[1_0/4, 1_0] A_{H/V}(1) > A_0/2$	31.701 HZ	UN	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	2.74 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.00078 < 0.05	OK	
σ _f < ε(f ₀)	0.03125 < 1.99844	OK	
$\sigma_A(f_0) < \theta(f_0)$	0.1418 < 1.58	OK	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/\/} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CASTIGLIONCELLO, T 62

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 27/03/13 16:29:02 End recording: 27/03/13 16:49:02 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 70% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

SINGLE COMPONENT SPECTRA

Max. H/V at 20.16 ± 10.18 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	20.16 > 0.50	OK				
n _c (f ₀) > 200	16931.3 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 968 times	OK				
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	13.938 Hz	OK				
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	26.313 Hz	OK				
A ₀ > 2	2.72 > 2	OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.5049 < 0.05		NO			
$\sigma_{\rm f} < \epsilon({\rm f_0})$	10.17683 < 1.00781		NO			

0.1306 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA EST, T63

frequency [Hz]

10

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
6.00	6.00	450	0.49
inf.	inf.	720	0.45

Vs(0.0-30.0)=655m/s

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 0.31 ± 0.03 Hz (nell'intervallo 0.0 - 35.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]						
$f_0 > 10 / L_w$	0.31 > 0.50		NO			
n _c (f ₀) > 200	281.3 > 200	OK				
σ _A (f) < 2 per 0.5f ₀ < f < 2f ₀ se f ₀ > 0.5Hz	Superato 0 volte su 16	ОК				
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$						
Criteri po [Almeno 5 su 0	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]					
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	ОК				
Esiste f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.844 Hz	ОК				
A ₀ > 2	1.81 > 2		NO			
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.04693 < 0.05	OK				
$\sigma_{f} < \epsilon(f_{0})$	0.01467 < 0.0625	OK				
$\sigma_A(f_0) < \theta(f_0)$	0.5583 < 2.5	OK				

Lw	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_{f} < \epsilon(f_{0})$
Â ₀	ampiezza della curva H/V alla frequenza f ₀
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f
f	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f_0^-) < A_0/2$
f ⁺	frequenza tra f_0 e 4 f_0 alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$						
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ per $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

ROSIGNANO SOLVAY, T 64

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 30/09/16 16:18:17 End recording: 30/09/16 16:38:17 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 75% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.22 ± 9.63 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	0.22 > 0.50		NO			
n _c (f ₀) > 200	196.9 > 200		NO			
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 12 times	OK				
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz						
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK				
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.75 Hz	OK				
A ₀ > 2 2.14 > 2 OK						
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	44.00968 < 0.05		NO			
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	9.62712 < 0.04375		NO			
$\sigma_A(f_0) < \Theta(f_0)$	0.2615 < 2.5	OK				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 65

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 12:26:10 End recording: 15/11/16 12:46:10 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.63 ± 0.01 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	0.63 > 0.50	OK				
n _c (f ₀) > 200	400.0 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 31 times	OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]						
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	1.031 Hz	OK				
A ₀ > 2	2.96 > 2	OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01768 < 0.05	OK				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.01105 < 0.09375

0.3471 < 2.0

OK

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

3

- 2

ROSIGNANO SOLVAY, T 66

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 13:19:38 End recording: 15/11/16 13:39:38 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 33% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

NO

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 39.97 ± 18.22 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	39.97 > 0.50	OK			
n _c (f ₀) > 200	15987.5 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 1410	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	28.844 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	61.531 Hz	OK			
A ₀ > 2 3.95 > 2 OK					

|0.45593| < 0.05

18.22302 < 1.99844

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

$\sigma_{A}(f_{0}) < \theta(f_{0})$ 0.6856 < 1.58 OK			ОК
L _w	window length		
n _w	number of windows used	d in the analysis	
$n_c = L_w n_w f_0$	number of significant cyc	cles	
f	current frequency		
f ₀	H/V peak frequency		
σ _f	standard deviation of H/	V peak frequency	
ε(f ₀)	threshold value for the s	tability condition $\sigma_{f} < \epsilon(f_{0})$	
A ₀	H/V peak amplitude at fr	equency f ₀	
A _{H/V} (f)	H/V curve amplitude at f	requency f	
f ⁻	frequency between f ₀ /4 a	and f_0 for which $A_{H/V}(f) < A_0/2$	
f ⁺	frequency between f ₀ an	d 4f ₀ for which $A_{H/V}(f^+) < A_0/2$	
σ _A (f)	standard deviation of A _H	$_{N}$ (f), σ_{A} (f) is the factor by which	h the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided		
$\sigma_{\text{logH/V}}(f)$	standard deviation of log	A _{H/V} (f) curve	
$\theta(f_0)$	threshold value for the s	tability condition $\sigma_A(f) < \theta(f_0)$	

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 67

Instrument: TZ3-0001/01-13

Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 14:05:48 End recording: 15/11/16 14:25:48 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 45% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.53 ± 22.72 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.53 > 0.50	OK			
n _c (f ₀) > 200	286.9 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 26 times OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.125 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.75 Hz	OK			
A ₀ > 2 2.53 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	42.76631 < 0.05		NO		
$\sigma_{\rm f} < \varepsilon({\rm f_0})$	22.7196 < 0.07969		NO		

0.2627 < 2.0

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

180

ROSIGNANO SOLVAY, T 68

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 14:40:34 End recording: 15/11/16 15:00:34 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 42% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

NO

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 39.97 ± 11.09 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	39.97 > 0.50	ОК			
n _c (f ₀) > 200	19984.4 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1410	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in [f₀/4, f₀] A _{H/V} (f) < A₀ / 2	31.938 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2 3.19 > 2 OK					

 $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

|0.27754| < 0.05

11.09278 < 1.99844

0.395 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \epsilon(f_{0})$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROSIGNANO SOLVAY, T 69

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 15:19:37 End recording: 15/11/16 15:39:37 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 42% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 0.31 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]							
$f_0 > 10 / L_w$	0.31 > 0.50		NO				
n _c (f ₀) > 200	156.3 > 200		NO				
$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz \qquad \text{Exceeded 0 out of 16 times}$							
$\sigma_A(t) < 3$ for $0.5t_0 < t < 2t_0$ if $t_0 < 0.5HZ$	$\sigma_{A}(t) < 3 \text{ for } 0.5t_{0} < t < 2t_{0} \text{ it } t_{0} < 0.5Hz$						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]							
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK					
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.813 Hz	OK					
A ₀ > 2 2.73 > 2 OK							
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.09381 < 0.05		NO				
$\sigma_{\rm f} < \epsilon(f_0)$ 0.02932 < 0.0625 OK							

0.4801 < 2.5

OK

r	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

2

ROSIGNANO SOLVAY, T 70

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 15:52:38 End recording: 15/11/16 16:12:38 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 67% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

10

ř

10

10

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

Max. H/V at 39.81 ± 12.44 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	39.81 > 0.50	OK			
n _c (f ₀) > 200	31850.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1412	out of 1412 OK			
$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$ times					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	17.969 Hz	OK			
Exists f^{\dagger} in [f_{0} 4f_{0}] $\Delta_{\mu\nu}(f^{\dagger}) < \Delta_{0}/2$	Exists f^{+} in [f_a 4f_a] $A_{uu}(f^{+}) \leq A_a/2$				

EXISTS I III $[1_0/4, 1_0] A_{H/V}(1) < A_0/2$	17.909 EZ	UN	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	3.08 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.31242 < 0.05		NO
σ _f < ε(f ₀)	12.4384 < 1.99063		NO
$\sigma_A(f_0) < \theta(f_0)$	0.2399 < 1.58	OK	

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
$\epsilon(f_0) [Hz] = 0.25 f_0 = 0.2 f_0 = 0.15 f_0 = 0.10 f_0 = 0.05 f_0$					
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20
ROSIGNANO SOLVAY, T71

TZ3-0001/01-13 Instrument: Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 17:15:31 End recording: 15/11/16 17:35:31 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

8

7

Δ

3

Max. H/V at 39.97 ± 6.97 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	39.97 > 0.50	OK		
n _c (f ₀) > 200	25580.0 > 200	OK		
$\sigma_A(f) < 2$ for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1410	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	31.594 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO	

Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO
A ₀ > 2	2.14 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.17443 < 0.05		NO
$\sigma_{\rm f} < \epsilon(f_0)$	6.9717 < 1.99844		NO
$\sigma_A(f_0) < \theta(f_0)$	0.1552 < 1.58	OK	
	·		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\tilde{\theta}(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA, **T**72

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 18:07:35 End recording: 15/11/16 18:27:36 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 58% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

DIRECTIONAL H/V

Max. H/V at 0.28 ± 0.02 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.28 > 0.50		NO	
n _c (f ₀) > 200	196.9 > 200		NO	
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 14 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria [At least 5	for a clear H/V peak			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	0.875 Hz	OK		
A ₀ > 2	2.27 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.05939 < 0.05		NO	
$\sigma_{\rm f} < \epsilon(f_0)$	0.0167 < 0.05625	OK		
$\sigma_A(f_0) < \theta(f_0)$	0.3743 < 2.5	OK		

-	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA EST, T 73

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 19:00:12 End recording: 15/11/16 19:20:12 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 63% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

9 8

7 6

5

Δ

DIRECTIONAL H/V

2

Max. H/V at 7.81 ± 1.3 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	7.81 > 0.50	OK		
n _c (f ₀) > 200	5937.5 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 376 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria [At least 5	a for a clear H/V peak			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	5.594 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	9.594 Hz	OK		
A ₀ > 2	2.76 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.1665 < 0.05		NO	
$\sigma_{f} < \epsilon(f_{0})$	1.3008 < 0.39063		NO	

0.2414 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

VADA EST, T 74

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 15/11/16 19:29:42 End recording: 15/11/16 19:49:42 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 53% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 34.28 ± 12.45 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	34.28 > 0.50	OK	
n _c (f ₀) > 200	21940.0 > 200	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 1500	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times		
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	22.313 Hz	OK	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	49.156 Hz	OK	
A ₀ > 2	3.72 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.36311 < 0.05		NO

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

12.44778 < 1.71406

0.4913 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 75

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 10/01/17 11:15:38 End recording: 10/01/17 11:35:38 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 73% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

Max. H/V at 15.56 ± 6.98 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	15.56 > 0.50	ОК		
n _c (f ₀) > 200	13695.0 > 200	ОК		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 748 times OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 5.438 Hz OK				
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	24.781 Hz	ОК		
A ₀ > 2 3.42 > 2 OK				
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{A}(f)] = f_0 \pm 5\%$ 0.44867 < 0.05			NO	
σ _f < ε(f ₀) 6.98243 < 0.77813 NO				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.2147 < 1.58

OK

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

VADA, T 76 Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 10/01/17 11:51:48 End recording: 10/01/17 12:11:48 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 63% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

Max. H/V at 7.78 ± 0.17 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	7.78 > 0.50	OK		
n _c (f ₀) > 200	5913.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ Exceeded 0 out of 374 times OK				
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ 4.094 Hz OK				
Exists f^* in $[f_0, 4f_0] A_{H/V}(f^*) < A_0 / 2$ 12.656 Hz OK				
A ₀ > 2 6.48 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.0221 < 0.05 OK				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.17199 < 0.38906

0.2907 < 1.58

ΟΚ

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

CHIOMA, T 77

Instrument: TZ3-0001/01-13 Data format: 32 byte Full scale [mV]: 51 Start recording: 10/01/17 15:52:59 End recording: 10/01/17 16:12:59 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available

Trace length: 0h20'00". Analyzed 88% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.13 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

Criteria f [All	or a reliable H/V curve 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.13 > 0.50		NO		
n _c (f ₀) > 200	132.5 > 200		NO		
$\sigma_A(f) < 2$ for 0.5 $f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 7 times	OK			
$\sigma_{A}(f) < 3$ for $0.5f_{0} < f < 2f_{0}$ if $f_{0} < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$ 0.094 Hz OK				
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2			NO		
A ₀ > 2	3.21 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.21988 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$ 0.02749 < 0.03125 OK					

0.4031 < 3.0

OK

	1
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
$\epsilon(f_0) [Hz] = 0.25 f_0 = 0.2 f_0 = 0.15 f_0 = 0.10 f_0 = 0.05 f_0$						
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	